ﻻ يوجد ملخص باللغة العربية
State-of-the-art approaches to infer dense depth measurements from images rely on CNNs trained end-to-end on a vast amount of data. However, these approaches suffer a drastic drop in accuracy when dealing with environments much different in appearance and/or context from those observed at training time. This domain shift issue is usually addressed by fine-tuning on smaller sets of images from the target domain annotated with depth labels. Unfortunately, relying on such supervised labeling is seldom feasible in most practical settings. Therefore, we propose an unsupervised domain adaptation technique which does not require groundtruth labels. Our method relies only on image pairs and leverages on classical stereo algorithms to produce disparity measurements alongside with confidence estimators to assess upon their reliability. We propose to fine-tune both depth-from-stereo as well as depth-from-mono architectures by a novel confidence-guided loss function that handles the measured disparities as noisy labels weighted according to the estimated confidence. Extensive experimental results based on standard datasets and evaluation protocols prove that our technique can address effectively the domain shift issue with both stereo and monocular depth prediction architectures and outperforms other state-of-the-art unsupervised loss functions that may be alternatively deployed to pursue domain adaptation.
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting. Semantic segmentation and monocular depth estimation are shown to be complementary tasks; in a multi-task l
Conventional unsupervised domain adaptation (UDA) studies the knowledge transfer between a limited number of domains. This neglects the more practical scenario where data are distributed in numerous different domains in the real world. The domain sim
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain l
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain. Recently, adversarial domain adaptation with two distinct classifiers (bi-classifier) has been introduced i