ﻻ يوجد ملخص باللغة العربية
Weakly Supervised Object Localization (WSOL) methodsusually rely on fully convolutional networks in order to ob-tain class activation maps(CAMs) of targeted labels. How-ever, these networks always highlight the most discriminativeparts to perform the task, the located areas are much smallerthan entire targeted objects. In this work, we propose a novelend-to-end model to enlarge CAMs generated from classifi-cation models, which can localize targeted objects more pre-cisely. In detail, we add an additional module in traditionalclassification networks to extract foreground object propos-als from images without classifying them into specific cate-gories. Then we set these normalized regions as unrestrictedpixel-level mask supervision for the following classificationtask. We collect a set of images defined as Background ImageSet from the Internet. The number of them is much smallerthan the targeted dataset but surprisingly well supports themethod to extract foreground regions from different pictures.The region extracted is independent from classification task,where the extracted region in each image covers almost en-tire object rather than just a significant part. Therefore, theseregions can serve as masks to supervise the response mapgenerated from classification models to become larger andmore precise. The method achieves state-of-the-art results onCUB-200-2011 in terms of Top-1 and Top-5 localization er-ror while has a competitive result on ILSVRC2016 comparedwith other approaches.
In medical imaging, Class-Activation Map (CAM) serves as the main explainability tool by pointing to the region of interest. Since the localization accuracy from CAM is constrained by the resolution of the models feature map, one may expect that segm
Weakly-Supervised Temporal Action Localization (WS-TAL) task aims to recognize and localize temporal starts and ends of action instances in an untrimmed video with only video-level label supervision. Due to lack of negative samples of background cate
We propose to help weakly supervised object localization for classes where location annotations are not available, by transferring things and stuff knowledge from a source set with available annotations. The source and target classes might share simi
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak s
Using state-of-the-art deep learning models for cancer diagnosis presents several challenges related to the nature and availability of labeled histology images. In particular, cancer grading and localization in these images normally relies on both im