ﻻ يوجد ملخص باللغة العربية
We study the topic of quantum differentiability on quantum Euclidean $d$-dimensional spaces (otherwise known as Moyal $d$-spaces), and we find conditions that are necessary and sufficient for the singular values of the quantised differential to have decay $O(n^{-alpha})$ for $0 < alpha leq frac{1}{d}$. This result is substantially more difficult than the analogous problems for Euclidean space and for quantum $d$-tori.
We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.
We introduce noncommutative weak Orlicz spaces associated with a weight and study their properties. We also define noncommutative weak Orlicz-Hardy spaces and characterize their dual spaces.
For a closed cocompact subgroup $Gamma$ of a locally compact group $G$, given a compact abelian subgroup $K$ of $G$ and a homomorphism $rho:hat{K}to G$ satisfying certain conditions, Landstad and Raeburn constructed equivariant noncommutative deforma
We consider the reduction of problems on general noncommutative $L_p$-spaces to the corresponding ones on those associated with finite von Neumann algebras. The main tool is a unpublished result of the first named author which approximates any noncom
Let $A$ be a finite subdiagonal algebra in Arvesons sense. Let $H^p(A)$ be the associated noncommutative Hardy spaces, $0<ple8$. We extend to the case of all positive indices most recent results about these spaces, which include notably the Riesz, Sz