ترغب بنشر مسار تعليمي؟ اضغط هنا

A Modular Transradial Bypass Socket for Surface Myoelectric Prosthetic Control in Non-Amputees

87   0   0.0 ( 0 )
 نشر من قبل Jacob George
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Bypass sockets allow researchers to perform tests of prosthetic systems from the prosthetic users perspective. We designed a modular upper-limb bypass socket with 3D-printed components that can be easily modified for use with a variety of terminal devices. Our bypass socket preserves access to forearm musculature and the hand, which are necessary for surface electromyography and to provide substituted sensory feedback. Our bypass socket allows a sufficient range of motion to complete tasks in the frontal working area, as measured on non-amputee participants. We examined the performance of non-amputee participants using the bypass socket on the original and modified Box and Block Tests. Participants moved 11.3 +/- 2.7 and 11.7 +/- 2.4 blocks in the original and modified Box and Block Tests (mean +/- SD), respectively, within the range of reported scores using amputee participants. Range-of-motion for users wearing the bypass socket meets or exceeds most reported range-of-motion requirements for activities of daily living. The bypass socket was originally designed with a freely rotating wrist; we found that adding elastic resistance to user wrist rotation while wearing the bypass socket had no significant effect on motor decode performance. We have open-sourced the design files and an assembly manual for the bypass socket. We anticipate that the bypass socket will be a useful tool to evaluate and develop sensorized myoelectric prosthesis technology.



قيم البحث

اقرأ أيضاً

Intuitive control of prostheses relies on training algorithms to correlate biological recordings to motor intent. The quality of the training dataset is critical to run-time performance, but it is difficult to label hand kinematics accurately after t he hand has been amputated. We quantified the accuracy and precision of labeling hand kinematics for two different approaches: 1) assuming a participant is perfectly mimicking predetermined motions of a prosthesis (mimicked training), and 2) assuming a participant is perfectly mirroring their contralateral hand during identical bilateral movements (mirrored training). We compared these approaches in non-amputee individuals, using an infrared camera to track eight different joint angles of the hands in real-time. Aggregate data revealed that mimicked training does not account for biomechanical coupling or temporal changes in hand posture. Mirrored training was significantly more accurate and precise at labeling hand kinematics. However, when training a modified Kalman filter to estimate motor intent, the mimicked and mirrored training approaches were not significantly different. The results suggest that the mirrored training approach creates a more faithful but more complex dataset. Advanced algorithms, more capable of learning the complex mirrored training dataset, may yield better run-time prosthetic control.
Multiarticulate bionic arms are now capable of mimicking the endogenous movements of the human hand. 3D-printing has reduced the cost of prosthetic hands themselves, but there is currently no low-cost alternative to dexterous electromyographic (EMG) control systems. To address this need, we developed an inexpensive (~$675) and portable EMG control system by integrating low-cost microcontrollers with an EMG acquisition device. We validated signal acquisition by comparing the signal-to-noise ratio (SNR) of our system with that of a high-end research-grade system. We also demonstrate the ability to use the low-cost control system for proportional and independent control of various prosthetic hands in real-time. We found that the SNR of the low-cost control system was statistically no worse than 44% of the SNR of a research-grade control system. The RMSEs of predicted hand movements (from a modified Kalman filter) were typically a few percent better than, and not more than 6% worse than, RMSEs of a research-grade system for up to six degrees of freedom when only relatively few (six) EMG electrodes were used. However, RMSEs were generally higher than RMSEs of research-grade systems that utilize considerably more (32) EMG electrodes, guiding future work towards increasing electrode count. Successful instantiation of this low-cost control system constitutes an important step towards the commercialization and wide-spread availability of dexterous bionic hands.
On the base of the developed master-slave prosthetic hand-arm robot system, which is controlled mainly based on signals obtained from bending sensors fixed on the data glove, the first idea deduced was to develop and add a multi-dimensional filter in to the original control system to make the control signals cleaner and more stable at real time. By going further, a second new idea was also proposed to predict new control information based on the combination of a new algorithm and prediction control theory. In order to fulfill the first idea properly, the possible methods to process data in real time, the different ways to produce Gaussian distributed random data, the way to combine the new algorithm with the previous complex program project, and the way to simplify and reduce the running time of the algorithm to maintain the high efficiency, the real time processing with multiple channels of the sensory system and the real-time performance of the control system were researched. Eventually, the experiment on the same provided robot system gives the results of the first idea and shows the improved performance of the filter comparing with the original control method.
The dexterity of conventional myoelectric prostheses is limited in part by the small datasets used to train the control algorithms. Variations in surface electrode positioning make it difficult to collect consistent data and to estimate motor intent reliably over time. To address these challenges, we developed an inexpensive, easy-to-don sleeve that can record robust and repeatable surface electromyography from 32 embedded monopolar electrodes. Embedded grommets are used to consistently align the sleeve with natural skin markings (e.g., moles, freckles, scars). The sleeve can be manufactured in a few hours for less than $60. Data from seven intact participants show the sleeve provides a signal-to-noise ratio of 14, a don-time under 11 seconds, and sub-centimeter precision for electrode placement. Furthermore, in a case study with one intact participant, we use the sleeve to demonstrate that neural networks can provide simultaneous and proportional control of six degrees of freedom, even 263 days after initial algorithm training. We also highlight that consistent recordings, accumulated over time to establish a large dataset, significantly improve dexterity. These results suggest that deep learning with a 74-layer neural network can substantially improve the dexterity and stability of myoelectric prosthetic control, and that deep-learning techniques can be readily instantiated and further validated through inexpensive sleeves/sockets with consistent recording locations.
We introduce our concept on the modular wireless robot consisting of three main modules : main unit, data acquisition and data processing modules. We have developed a generic prototype with an integrated control and monitoring system to enhance its f lexibility, and to enable simple operation through a web-based interface accessible wirelessly. In present paper, we focus on the microcontroller based hardware to enable data acquisition and remote mechanical control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا