ترغب بنشر مسار تعليمي؟ اضغط هنا

On Learning Disentangled Representations for Gait Recognition

103   0   0.0 ( 0 )
 نشر من قبل Ziyuan Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Gait, the walking pattern of individuals, is one of the important biometrics modalities. Most of the existing gait recognition methods take silhouettes or articulated body models as gait features. These methods suffer from degraded recognition performance when handling confounding variables, such as clothing, carrying and viewing angle. To remedy this issue, we propose a novel AutoEncoder framework, GaitNet, to explicitly disentangle appearance, canonical and pose features from RGB imagery. The LSTM integrates pose features over time as a dynamic gait feature while canonical features are averaged as a static gait feature. Both of them are utilized as classification features. In addition, we collect a Frontal-View Gait (FVG) dataset to focus on gait recognition from frontal-view walking, which is a challenging problem since it contains minimal gait cues compared to other views. FVG also includes other important variations, e.g., walking speed, carrying, and clothing. With extensive experiments on CASIA-B, USF, and FVG datasets, our method demonstrates superior performance to the SOTA quantitatively, the ability of feature disentanglement qualitatively, and promising computational efficiency. We further compare our GaitNet with state-of-the-art face recognition to demonstrate the advantages of gait biometrics identification under certain scenarios, e.g., long distance/lower resolutions, cross viewing angles.



قيم البحث

اقرأ أيضاً

76 - Ziyuan Zhang , Luan Tran , Xi Yin 2019
Gait, the walking pattern of individuals, is one of the most important biometrics modalities. Most of the existing gait recognition methods take silhouettes or articulated body models as the gait features. These methods suffer from degraded recogniti on performance when handling confounding variables, such as clothing, carrying and view angle. To remedy this issue, we propose a novel AutoEncoder framework to explicitly disentangle pose and appearance features from RGB imagery and the LSTM-based integration of pose features over time produces the gait feature. In addition, we collect a Frontal-View Gait (FVG) dataset to focus on gait recognition from frontal-view walking, which is a challenging problem since it contains minimal gait cues compared to other views. FVG also includes other important variations, e.g., walking speed, carrying, and clothing. With extensive experiments on CASIA-B, USF and FVG datasets, our method demonstrates superior performance to the state of the arts quantitatively, the ability of feature disentanglement qualitatively, and promising computational efficiency.
Unsupervised model transfer has the potential to greatly improve the generalizability of deep models to novel domains. Yet the current literature assumes that the separation of target data into distinct domains is known as a priori. In this paper, we propose the task of Domain-Agnostic Learning (DAL): How to transfer knowledge from a labeled source domain to unlabeled data from arbitrary target domains? To tackle this problem, we devise a novel Deep Adversarial Disentangled Autoencoder (DADA) capable of disentangling domain-specific features from class identity. We demonstrate experimentally that when the target domain labels are unknown, DADA leads to state-of-the-art performance on several image classification datasets.
Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, among others. Each factor accounts for a source of variability in the data, while the multiplicative interactions of these fac tors emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved factors from visual data is a challenging task, especially when the data have been captured in uncontrolled recording conditions (also referred to as in-the-wild) and label information is not available. In this paper, we propose the first unsupervised deep learning method (with pseudo-supervision) for disentangling multiple latent factors of variation in face images captured in-the-wild. To this end, we propose a deep latent variable model, where the multiplicative interactions of multiple latent factors of variation are explicitly modelled by means of multilinear (tensor) structure. We demonstrate that the proposed approach indeed learns disentangled representations of facial expressions and pose, which can be used in various applications, including face editing, as well as 3D face reconstruction and classification of facial expression, identity and pose.
Unsupervised domain adaptation (UDA) aims to address the domain-shift problem between a labeled source domain and an unlabeled target domain. Many efforts have been made to address the mismatch between the distributions of training and testing data, but unfortunately, they ignore the task-oriented information across domains and are inflexible to perform well in complicated open-set scenarios. Many efforts have been made to eliminate the mismatch between the distributions of training and testing data by learning domain-invariant representations. However, the learned representations are usually not task-oriented, i.e., being class-discriminative and domain-transferable simultaneously. This drawback limits the flexibility of UDA in complicated open-set tasks where no labels are shared between domains. In this paper, we break the concept of task-orientation into task-relevance and task-irrelevance, and propose a dynamic task-oriented disentangling network (DTDN) to learn disentangled representations in an end-to-end fashion for UDA. The dynamic disentangling network effectively disentangles data representations into two components: the task-relevant ones embedding critical information associated with the task across domains, and the task-irrelevant ones with the remaining non-transferable or disturbing information. These two components are regularized by a group of task-specific objective functions across domains. Such regularization explicitly encourages disentangling and avoids the use of generative models or decoders. Experiments in complicated, open-set scenarios (retrieval tasks) and empirical benchmarks (classification tasks) demonstrate that the proposed method captures rich disentangled information and achieves superior performance.
Disentangled representation learning has been proposed as an approach to learning general representations. This can be done in the absence of, or with limited, annotations. A good general representation can be readily fine-tuned for new target tasks using modest amounts of data, or even be used directly in unseen domains achieving remarkable performance in the corresponding task. This alleviation of the data and annotation requirements offers tantalising prospects for tractable and affordable applications in computer vision and healthcare. Finally, disentangled representations can offer model explainability and can help us understand the underlying causal relations of the factors of variation, increasing their suitability for real-world deployment. In this tutorial paper, we will offer an overview of the disentangled representation learning, its building blocks and criteria, and discuss applications in computer vision and medical imaging. We conclude our tutorial by presenting the identified opportunities for the integration of recent machine learning advances into disentanglement, as well as the remaining challenges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا