ترغب بنشر مسار تعليمي؟ اضغط هنا

Global simulations of Tayler instability in stellar interiors: The stabilizing effect of gravity

76   0   0.0 ( 0 )
 نشر من قبل Fabio Del Sordo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unveiling the evolution of toroidal field instability, known as Tayler instability, is essential to understand the strength and topology of the magnetic fields observed in early-type stars, in the core of the red giants, or in any stellar radiative zone. We want to study the non-linear evolution of the instability of a toroidal field stored in a stably stratified layer, in spherical symmetry and in the absence of rotation. In particular, we intend to quantify the suppression of the instability as a function of the Brunt-Vaisala ($omega_{rm BV}$) and the Alfven ($omega_{rm A}$) frequencies. We use the MHD equations as implemented in the anelastic approximation in the EULAG-MHD code and perform a large series of numerical simulations of the instability exploring the parameter space for the $omega_{rm BV}$ and $omega_{rm A}$. We show that beyond a critical value gravity strongly suppress the instability, in agreement with the linear analysis. The intensity of the initial field also plays an important role: weaker fields show much slower growth rates. Moreover, in the case of very low gravity, the fastest growing modes have a large characteristic radial scale, at variance with the case of strong gravity, where the instability is characterized by horizontal displacements. Our results illustrate that the anelastic approximation can efficiently describe the evolution of toroidal field instability in stellar interiors. The suppression of the instability as a consequence of increasing values of $omega_{rm BV}$ might play a role to explain the magnetic desert in Ap/Bp stars since weak fields are only marginally unstable in the case of strong gravity.



قيم البحث

اقرأ أيضاً

68 - S.Sengupta , P. Garaud 2018
We study the effects of rotation on the growth and saturation of the double-diffusive fingering (thermohaline) instability at low Prandtl number. Using direct numerical simulations, we estimate the compositional transport rates as a function of the r elevant non-dimensional parameters - the Rossby number, inversely proportional to the rotation rate, and the density ratio which measures the relative thermal and compositional stratifications. Within our explored range of parameters, we generally find rotation to have little effect on vertical transport. However, we also present one exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly low Rossby number. The LSV leads to significant enhancement in the fingering transport rates by concentrating compositionally dense downflows at its core. We argue that the formation of such LSVs could be relevant to solving the missing mixing problem in RGB stars.
80 - G Guerrero 2020
The dynamo mechanism, responsible for the solar magnetic activity, is still an open problem in astrophysics. Different theories proposed to explain such phenomena have failed in reproducing the observational properties of the solar magnetism. Thus, a b-initio computational modeling of the convective dynamo in a spherical shell turns out as the best alternative to tackle this problem. In this work we review the efforts performed in global simulations over the past decades. Regarding the development and sustain of mean-flows, as well as mean magnetic field, we discuss the points of agreement and divergence between the different modeling strategies. Special attention is given to the implicit large-eddy simulations performed with the EULAG-MHD code.
67 - J.R. Espinosa 2020
A new approach to vacuum decay in quantum field theory, based on a simple variational formulation in field space using a tunneling potential, is ideally suited to study the effects of gravity on such decays. The method allows to prove in new and simp le ways many results, among others, that gravitational corrections tend to make Minkowski or Anti de Sitter false vacua more stable semiclassically or that higher barriers increase vacuum lifetime. The approach also offers a very clean picture of gravitational quenching of vacuum decay and its parametric dependence on the features of a potential and allows to study the BPS domain-walls between vacua in critical cases. Special attention is devoted to supersymmetric potentials and to the discussion of near-critical vacuum decays, for which it is shown how the new method can be usefully applied beyond the thin-wall approximation.
Typical flows in stellar interiors are much slower than the speed of sound. To follow the slow evolution of subsonic motions, various sound-proof equations are in wide use, particularly in stellar astrophysical fluid dynamics. These low-Mach number e quations include the anelastic equations. Generally, these equations are valid in nearly adiabatically stratified regions like stellar convection zones, but may not be valid in the sub-adiabatic, stably stratified stellar radiative interiors. Understanding the coupling between the convection zone and the radiative interior is a problem of crucial interest and may have strong implications for solar and stellar dynamo theories as the interface between the two, called the tachocline in the Sun, plays a crucial role in many solar dynamo theories. Here we study the properties of gravity waves in stably-stratified atmospheres. In particular, we explore how gravity waves are handled in various sound-proof equations. We find that some anelastic treatments fail to conserve energy in stably-stratified atmospheres, instead conserving pseudo-energies that depend on the stratification, and we demonstrate this numerically. One anelastic equation set does conserve energy in all atmospheres and we provide recommendations for converting low-Mach number anelastic codes to this set of equations.
143 - Benjamin P. Brown 2011
Stars on the lower main sequence (F-type through M-type) have substantial convective envelopes beneath their stellar photospheres. Convection in these regions can couple with rotation to build global-scale structures that may be observable by interfe rometers that can resolve stellar disks. Here I discuss predictions emerging from 3D MHD simulations for solar-type stars with the anelastic spherical harmonic (ASH) code and how these predictions may be observationally tested. The zonal flow of differential rotation is likely the most easily observable signature of dynamics occurring deep within the stellar interior. Generally, we find that rapidly rotating suns have a strong solar-like differential rotation with a prograde equator and retrograde poles while slowly spinning suns may have anti-solar rotation profiles with fast poles and slow equators. The thermal wind balance accompanying the differential rotation may lead to hot and bright poles in the rapid rotators and cooler, darker poles in slow rotators. The convection and differential rotation build global-scale magnetic structures in the bulk of the convection zone, and these wreaths of magnetism may be observable near the stellar surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا