ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Energization in Space Plasmas: Towards a Multi-Point, Multi-Scale Plasma Observatory. A White Paper for the Voyage 2050 long-term plan in the ESAs Science Programme

247   0   0.0 ( 0 )
 نشر من قبل Alessandro Retino
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This White Paper outlines the importance of addressing the fundamental science theme <<How are charged particles energized in space plasmas>> through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection,waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class plasma observatory consisting of at least 7 spacecraft covering fluid, ion and electron scales are needed. The plasma observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2035-2050 science program, it would further strengthen the European scientific and technical leadership in this important field.

قيم البحث

اقرأ أيضاً

This paper addresses the fundamental science question: How does solar wind energy flow through the Earths magnetosphere, how is it converted and distributed?. We need to understand how the Sun creates the heliosphere, and how the planets interact wit h the solar wind and its magnetic field, not just as a matter of scientific curiosity, but to address a clear and pressing practical problem: space weather, which can influence the performance and reliability of our technological systems, in space and on the ground, and can endanger human life and health. Much knowledge has already been acquired over the past decades, but the infant stage of space weather forecasting demonstrates that we still have a vast amount of learning to do. We can tackle this issue in two ways: 1) By using multiple spacecraft measuring conditions in situ in the magnetosphere in order to make sense of the fundamental small scale processes that enable transport and coupling, or 2) By taking a global approach to observations of the conditions that prevail throughout geospace in order to quantify the global effects of external drivers. A global approach is now being taken by a number of space missions under development and the first tantalising results of their exploration will be available in the next decade. Here we propose the next step-up in the quest for a complete understanding of how the Sun gives rise to and controls the Earths plasma environment: a tomographic imaging approach comprising two spacecraft which enable global imaging of magnetopause and cusps, auroral regions, plasmasphere and ring current, alongside in situ measurements. Such a mission is going to be crucial on the way to achieve scientific closure on the question of solar-terrestrial interactions.
The objective of this White Paper submitted to ESAs Voyage 2050 call is to get a more holistic knowledge of the dynamics of the Martian plasma system from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can onl y be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of Mars exploration as it happened at Earth few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact on magnetospheric and ionospheric dynamics? (ii) What is the structure and nature of the tail of Mars magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.
This white paper proposes that AMBITION, a Comet Nucleus Sample Return mission, be a cornerstone of ESAs Voyage 2050 programme. We summarise some of the most important questions still open in cometary science after the successes of the Rosetta missio n, many of which require sample analysis using techniques that are only possible in laboratories on Earth. We then summarise measurements, instrumentation and mission scenarios that can address these questions, with a recommendation that ESA select an ambitious cryogenic sample return mission. Rendezvous missions to Main Belt comets and Centaurs are compelling cases for M-class missions, expanding our knowledge by exploring new classes of comets. AMBITION would engage a wide community, drawing expertise from a vast range of disciplines within planetary science and astrophysics. With AMBITION, Europe will continue its leadership in the exploration of the most primitive Solar System bodies.
In review of the White Papers from the Voyage 2050 process and after the public presentation of a number of these papers in October 2019 in Madrid, we as White Paper lead authors have identified a coherent science theme that transcends the divisions around which the Topical Teams are structured. This note aims to highlight this synergistic science theme and to make the Topical Teams and the Voyage 2050 Senior Committee aware of the wide importance of these topics and the broad support that they have across the worldwide science community.
A new all-sky visible and Near-InfraRed (NIR) space astrometry mission with a wavelength cutoff in the K-band is not just focused on a single or small number of key science cases. Instead, it is extremely broad, answering key science questions in nea rly every branch of astronomy while also providing a dense and accurate visible-NIR reference frame needed for future astronomy facilities. For almost 2 billion common stars the combination of Gaia and a new all-sky NIR astrometry mission would provide much improved proper motions, answering key science questions -- from the solar system and stellar systems, including exoplanet systems, to compact galaxies, quasars, neutron stars, binaries and dark matter substructures. The addition of NIR will result in up to 8 billion newly measured stars in some of the most obscured parts of our Galaxy, and crucially reveal the very heart of the Galactic bulge region. In this white paper we argue that rather than improving on the accuracy, a greater overall science return can be achieved by going deeper than Gaia and by expanding the wavelength range to the NIR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا