ﻻ يوجد ملخص باللغة العربية
We report on the experimental investigation of the properties of the eigenvalues and wavefunctions and the fluctuation properties of the scattering matrix of closed and open billiards, respectively, of which the classical dynamics undergoes a transition from integrable via almost integrable to fully chaotic. To realize such a system we chose a billiard with a 60 degree sector shape of which the classical dynamics is integrable, and introduced circular scatterers of varying number, size and position. The spectral properties of generic quantum systems of which the classical counterpart is either integrable or chaotic are universal and well understood. If, however, the classical dynamics is pseudo-integrable or almost-integrable, they exhibit a non-universal intermediate statistics, for which analytical results are known only in a few cases, like, e.g., if it corresponds to semi-Poisson statistics. Since the latter is, above all, clearly distinguishable from those of integrable and chaotic systems our aim was to design a billiard with these features which indeed is achievable by adding just one scatterer of appropriate size and position to the sector billiard. We demonstrate that, while the spectral properties of almost-integrable billiards are sensitive to the classical dynamics, this is not the case for the distribution of the wavefunction components, which was analysed in terms of the strength distribution, and the fluctuation properties of the scattering matrix which coincide with those of typical, fully chaotic systems.
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics whereas those of time-reversal symmetric, classically cha
The relation between the Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases a
Uncertainty relation is not only of fundamental importance to quantum mechanics, but also crucial to the quantum information technology. Recently, majorization formulation of uncertainty relations (MURs) have been widely studied, ranging from two mea
We report the experimental implementation of the Dicke model in the semiclassical approximation, which describes a large number of two-level atoms interacting with a single-mode electromagnetic field in a perfectly reflecting cavity. This is managed
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.