ترغب بنشر مسار تعليمي؟ اضغط هنا

First [NII]122$mu$m line detection in a QSO-SMG pair BRI 1202-0725 at $z=4.69$

129   0   0.0 ( 0 )
 نشر من قبل Minju M. Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection obtained with ALMA of the [N II] 122$mu$m line emission from a galaxy group BRI 1202-0725 at $z=4.69$ consisting of a QSO and a submilimeter-bright galaxy (SMG). Combining with a detection of [N II] 205$mu$m line in both galaxies, we constrain the electron densities of the ionized gas based on the line ratio of [NII]122/205. The derived electron densities are $26^{+12}_{-11}$ and $134^{+50}_{-39}$ cm$^{-3}$ for the SMG and the QSO, respectively. The electron density of the SMG is similar to that of the Galactic Plane and to the average of the local spirals. Higher electron densities by up to a factor of three could, however, be possible for systematic uncertainties of the line flux estimates. The electron density of the QSO is comparable to high-$z$ star-forming galaxies at $z=1.5-2.3$, obtained using rest-frame optical lines and with the lower limits suggested from stacking analysis on lensed starbursts at $z=1-3.6$ using the same tracer of [NII]. Our results suggest a large scatter of electron densities in global scale at fixed star formation rates for extreme starbursts. The success of the [N II] 122$mu$m and 205$mu$m detections at $z=4.69$ demonstrates the power of future systematic surveys of extreme starbursts at $z>4$ for probing the ISM conditions and the effects on surrounding environments.



قيم البحث

اقرأ أيضاً

We report the first detections of the [NII] 122 {mu}m line from a high redshift galaxy. The line was strongly (> 6{sigma}) detected from SMMJ02399-0136, and H1413+117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) o n the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are ~7.0times10^{-4} (Cloverleaf) and 2.1times10^{-3} (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, ~8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [OIII] 88 {mu}m line, the [OIII]/[NII] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of ~200 M82 like starbursts accounting for all of the FIR emission and 43% of the [NII] line. The remainder may come from the NLR. This work demonstrates the utility of the [NII] and [OIII] lines in constraining properties of the ionized medium.
119 - D. Iono 2006
We present ~3 resolution imaging of the z=4.7 QSO BR1202-0725 at 900 micron from the Submillimeter Array. The two submillimeter continuum components are clearly resolved from each other, and the positions are consistent with previous lower frequency images. In addition, we detect [CII] line emission from the northern component. The ratio of [CII] to far-infrared luminosity is 0.04% for the northern component, and an upper limit of < 0.03% is obtained for the southern component. These ratios are similar to the low values found in local ultraluminous galaxies, indicating that the excitation conditions are different from those found in local field galaxies. X-ray emission is detected by Chandra from the southern component at L$_{0.5-2keV}=3times10^{45}$~erg~s$^{-1}$, and detected at 99.6% confidence from the northern component at L$_{0.5-2keV}sim3times10^{44}$erg~s$^{-1}$, supporting the idea that BR1202-0725 is a pair of interacting galaxies at z=4.7 that each harbor an active nucleus.
292 - M. D. Lehnert 2020
(abridged) We present ALMA observations of hydrogen fluoride, HF J=1-0, H20 (220-211), and the 1.2 THz rest-frame continuum emission from the z=4.7 system BR1202-0725. BR1202-0725 is a galaxy group consisting of a QSO, a sub-millimeter galaxy (SMG), and two Ly-alpha emitters. We detected HF in emission in the QSO and possibly in absorption in the SMG, while water is detected in emission in both the QSO and SMG. The QSO is the most luminous HF emitter yet found and has the same ratio of HF emission line to infrared luminosity as a sample of local AGN and the Orion Bar. This consistency covers about 10 orders-of-magnitude in infrared luminosity, L_IR. Based on the conclusions of a study of HF emission in the Orion Bar and modeling, the HF emission in the QSO is either excited by collisions with electrons and H2 in molecular plasmas irradiated by the AGN and intense star formation or predominately by collisions with H2, with a modest contribution from electrons, in a relatively high temperature (~120 K), dense (~10^5 cm^-3) medium. Although HF should be an excellent tracer of molecular outflows, we do not find strong evidence for outflows in HF in either the QSO or the SMG. From a putative absorption feature in HF in the SMG, we estimate an upper limit on the outflow rate, dM/dt_outflow <~45 M_sun/yr. The ratio of the outflow rate to the star formation rate is <5% for the SMG. The broadness of the H2O line in the SMG, FWHM~1020 km/s, may suggest that either the gas on large scales (>4 kpc) is significantly more disturbed and turbulent due either to interactions and mass exchange with the other members of the group or to the dissipation of the energy of the intense star formation or both. The lack of significant molecular outflows in either source may imply that much of the energy from the intense star formation and AGN activity in this pair is being dissipated in their ISM.
We present the results from our Atacama Large Millimeter/submillimeter Array (ALMA) imaging observations of the CO (7-6), [CI] 370 um (hereafter [CI]) and [NII] 205 um (hereafter [NI]I) lines and their underlying continuum emission of BRI 1335-0417, an infrared bright quasar at z = 4.407. At the achieved resolutions of 1.1 to 1.2 (or 7.5 to 8.2 kpc), the continuum at 205 and 372 um (rest-frame), the CO (7-6), and the [CI] emissions are at best barely resolved whereas the [NII] emission is well resolved with an ALMA beam de-convolved major axis of 1.3 (+/- 0.3) or 9 (+/-2) kpc. As a warm dense gas tracer, the CO (7-6) emission shows a more compact spatial distribution and a significantly higher peak velocity dispersion than the other two lines that probe lower density gas, a picture favoring a merger-triggered star formation (SF) scenario over an orderly rotating SF disk. The CO (7-6) data also indicate a possible QSO-driven gas outflow that reaches a maximum line-of-sight velocity of 500 to 600 km/s. The far-infrared (FIR) dust temperature (T_dust) of 41.5 K from a gray-body fit to the continuum agrees well with the average T_dust inferred from various line luminosity ratios. The resulting L_CO(7-6)/L_FIR luminosity ratio is consistent with that of local luminous infrared galaxies powered predominantly by SF. The CO(7-6) luminosity-inferred SF rate is 5.1 (+/-1.5) x 10^3 M_solar/yr . The system has an effective star-forming region of 1.7 (+1.7/-0.8) kpc in diameter and a molecular gas reservoir of ~5 x 10^{11} M_solar.
The [NII] 122 and 205 mu m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved reg ions with a typical size of ~1 kiloparsec, with observations of both [NII] far-infrared lines. We measure [NII] 122/205 line ratios in the ~0.6-6 range, which corresponds to electron gas densities $n_e$~1-300 cm$^{-3}$, with a median value of $n_e$=30 cm$^{-3}$. Variations in the electron density within individual galaxies can be as a high as a factor of ~50, frequently with strong radial gradients. We find that $n_e$ increases as a function of infrared color, dust-weighted mean starlight intensity, and star formation rate surface density ($Sigma_{SFR}$). As the intensity of the [NII] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the star formation rate (SFR). We derive relations between the [NII] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [NII] surface brightness and $Sigma_{SFR}$ can be understood as a property of the $n_e$ distribution. For regions with $n_e$ close to or higher than the [NII] line critical densities, the low-density limit [NII]-based SFR calibration systematically underestimates the SFR since [NII] emission is collisionally quenched. Finally, we investigate the relation between [NII] emission, SFR, and $n_e$ by comparing our observations to predictions from the MAPPINGS-III code.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا