ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-asymptotic Closed-Loop System Identification using Autoregressive Processes and Hankel Model Reduction

81   0   0.0 ( 0 )
 نشر من قبل Bruce Lee
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the primary challenges of system identification is determining how much data is necessary to adequately fit a model. Non-asymptotic characterizations of the performance of system identification methods provide this knowledge. Such characterizations are available for several algorithms performing open-loop identification. Often times, however, data is collected in closed-loop. Application of open-loop identification methods to closed-loop data can result in biased estimates. One method used by subspace identification techniques to eliminate these biases involves first fitting a long-horizon autoregressive model, then performing model reduction. The asymptotic behavior of such algorithms is well characterized, but the non-asymptotic behavior is not. This work provides a non-asymptotic characterization of one particular variant of these algorithms. More specifically, we provide non-asymptotic upper bounds on the generalization error of the produced model, as well as high probability bounds on the difference between the produced model and the finite horizon Kalman Filter.



قيم البحث

اقرأ أيضاً

The paper introduces novel methodologies for the identification of coefficients of switched autoregressive and switched autoregressive exogenous linear models. We consider cases which systems outputs are contaminated by possibly large values of noise for the both case of measurement noise in switched autoregressive models and process noise in switched autoregressive exogenous models. It is assumed that only partial information on the probability distribution of the noise is available. Given input-output data, we aim at identifying switched system coefficients and parameters of the distribution of the noise, which are compatible with the collected data. We demonstrate the efficiency of the proposed approach with several academic examples. The method is shown to be extremely effective in the situations where a large number of measurements is available; cases in which previous approaches based on polynomial or mixed-integer optimization cannot be applied due to very large computational burden.
299 - Jing Shuang Li , Dimitar Ho 2020
We show that given a desired closed-loop response for a system, there exists an affine subspace of controllers that achieve this response. By leveraging the existence of this subspace, we are able to separate controller design from closed-loop design by first synthesizing the desired closed-loop response and then synthesizing a controller that achieves the desired response. This is a useful extension to the recently introduced System Level Synthesis framework, in which the controller and closed-loop response are jointly synthesized and we cannot enforce controller-specific constraints without subjecting the closed-loop map to the same constraints. We demonstrate the importance of separating controller design from closed-loop design with an example in which communication delay and locality constraints cause standard SLS to be infeasible. Using our new two-step procedure, we are able to synthesize a controller that obeys the constraints while only incurring a 3% increase in LQR cost compared to the optimal LQR controller.
This article is concerned with the identification of autoregressive with exogenous inputs (ARX) models. Most of the existing approaches like prediction error minimization and state-space framework are widely accepted and utilized for the estimation o f ARX models but are known to deliver unbiased and consistent parameter estimates for a correctly supplied guess of input-output orders and delay. In this paper, we propose a novel automated framework which recovers orders, delay, output noise distribution along with parameter estimates. The primary tool utilized in the proposed framework is generalized spectral decomposition. The proposed algorithm systematically estimates all the parameters in two steps. The first step utilizes estimates of the order by examining the generalized eigenvalues, and the second step estimates the parameter from the generalized eigenvectors. Simulation studies are presented to demonstrate the efficacy of the proposed method and are observed to deliver consistent estimates even at low signal to noise ratio (SNR).
This paper introduces a closed-loop frequency analysis tool for reset control systems. To begin with sufficient conditions for the existence of the steady-state response for a closed-loop system with a reset element and driven by periodic references are provided. It is then shown that, under specific conditions, such a steady-state response for periodic inputs is periodic with the same period as the input. Furthermore, a framework to obtain the steady-state response and to define a notion of closed-loop frequency response, including high order harmonics, is presented. Finally, pseudo-sensitivities for reset control systems are defined. These simplify the analysis of this class of systems and allow a direct software implementation of the analysis tool. To show the effectiveness of the proposed analysis method the position control problem for a precision positioning stage is studied. In particular, comparison with the results achieved using methods based on the Describing Function shows that the proposed method achieves superior closed-loop performance.
We consider a cooperative system identification scenario in which an expert agent (teacher) knows a correct, or at least a good, model of the system and aims to assist a learner-agent (student), but cannot directly transfer its knowledge to the stude nt. For example, the teachers knowledge of the system might be abstract or the teacher and student might be employing different model classes, which renders the teachers parameters uninformative to the student. In this paper, we propose correctional learning as an approach to the above problem: Suppose that in order to assist the student, the teacher can intercept the observations collected from the system and modify them to maximize the amount of information the student receives about the system. We formulate a general solution as an optimization problem, which for a multinomial system instantiates itself as an integer program. Furthermore, we obtain finite-sample results on the improvement that the assistance from the teacher results in (as measured by the reduction in the variance of the estimator) for a binomial system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا