ﻻ يوجد ملخص باللغة العربية
Estimating the number of clusters (K) is a critical and often difficult task in cluster analysis. Many methods have been proposed to estimate K, including some top performers using resampling approach. When performing cluster analysis in high-dimensional data, simultaneous clustering and feature selection is needed for improved interpretation and performance. To our knowledge, none has investigated simultaneous estimation of K and feature selection in an exploratory cluster analysis. In this paper, we propose a resampling method to meet this gap and evaluate its performance under the sparse K-means clustering framework. The proposed target function balances between sensitivity and specificity of clustering evaluation of pairwise subjects from clustering of full and subsampled data. Through extensive simulations, the method performs among the best over classical methods in estimating K in low-dimensional data. For high-dimensional simulation data, it also shows superior performance to simultaneously estimate K and feature sparsity parameter. Finally, we evaluated the methods in four microarray, two RNA-seq, one SNP and two non-omics datasets. The proposed method achieves better clustering accuracy with fewer selected predictive genes in almost all real applications.
The clustering for functional data with misaligned problems has drawn much attention in the last decade. Most methods do the clustering after those functional data being registered and there has been little research using both functional and scalar v
Change-points are a routine feature of big data observed in the form of high-dimensional data streams. In many such data streams, the component series possess group structures and it is natural to assume that changes only occur in a small number of a
An ultrametric topology formalizes the notion of hierarchical structure. An ultrametric embedding, referred to here as ultrametricity, is implied by a hierarchical embedding. Such hierarchical structure can be global in the data set, or local. By qua
Feature selection is an important and challenging task in high dimensional clustering. For example, in genomics, there may only be a small number of genes that are differentially expressed, which are informative to the overall clustering structure. E
The widespread availability of high-dimensional biological data has made the simultaneous screening of numerous biological characteristics a central statistical problem in computational biology. While the dimensionality of such datasets continues to