ﻻ يوجد ملخص باللغة العربية
Magnetic reconnection occurs when two plasmas having co-planar but anti-parallel magnetic fields meet. At the contact point, the field is locally annihilated and the magnetic energy can be released into the surrounding plasma. Theory and numerical modelling still face many challenges in handling this complex process, the predictability of which remains elusive. Here we test, through a laboratory experiment conducted in a controlled geometry, the effect of changing the field topology from two-dimensional to three-dimensional. This is done by imposing an out-of-plane (guide) magnetic field of adjustable strength. A strong slowing down or even halting of symmetric reconnection is observed, even for a weak guide-field. Concomitantly, we observe a delayed heating of the plasma in the reconnection region and modified particle acceleration, with super-Alfvenic outflows ejected along the reconnection layer. These observations highlight the importance of taking into account three-dimensional effects in the many reconnection events taking place in natural and laboratory environments.
Results of the first validation of large guide field, $B_g / delta B_0 gg 1$, gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant $beta_i = 0.01$ and solar wind relevant $beta_i = 1$ are presented, where $delta B_0$
A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this set-up neglects both the formation of the current sheet and t
The current understanding of MHD turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheet-like structures at s
A prediction of the steady-state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath)
The tearing mode instability is one important mechanism that may explain the triggering of fast magnetic reconnection in astrophysical plasmas such as the solar corona and the Earths magnetosphere. In this paper, the linear stability analysis of the