ﻻ يوجد ملخص باللغة العربية
A model is described, in which electrical breakdown in high-voltage systems is caused by stochastic fluctuations of the mobile dislocation population in the cathode. In this model, the mobile dislocation density normally fluctuates, with a finite probability to undergo a critical transition due to the effects of the external field. It is suggested that once such a transition occurs, the mobile dislocation density will increase deterministically, leading to electrical breakdown. Model parametrization is achieved via microscopic analysis of OFHC Cu cathode samples from the CERN CLIC project, allowing the creation and depletion rates of mobile dislocations to be estimated as a function of the initial physical condition of the material and the applied electric field. We find analytical expressions for the mean breakdown time and quasistationary probability distribution of the mobile dislocation density, and verify these results by using a Gillespie algorithm. A least-squares algorithm is used to fit these results with available experimental data of the dependence of the breakdown rate on the applied strength of the electric field and on temperature. The effects of the variation of some of the assumptions of the physical model are considered, and a number of additional experiments to validate the model are proposed, which include examining the effects of the temperature and pulse length, as well as of a time-dependent electric field, on the breakdown rate. Finally, applications of the model are discussed, including the usage of the quasistatic probability distribution to predict breakdowns, and applying the predictions of the model to improve the conditioning process of the cathode material.
We study the heterogeneous nucleation of Ising model on complex networks under a non-equilibrium situation where the impurities perform degree-biased motion controlled by a parameter alpha. Through the forward flux sampling and detailed analysis on t
The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility of breakdown. The generalization of the Fowler-Nordheim equation makes it possible to take
Electric field induced nucleation is introduced as a possible mechanism to realize a metallic phase of hydrogen. Analytical expressions are derived for the nucleation probabilities of both thermal and quantum nucleation in terms of material parameter
Dislocations are one-dimensional (1D) topological line defects where the lattice deviates from the perfect crystal structure. The presence of dislocations transcends condensed matter research and gives rise to a diverse range of emergent phenomena [1
We propose a model of mobile agents to construct social networks, based on a system of moving particles by keeping track of the collisions during their permanence in the system. We reproduce not only the degree distribution, clustering coefficient an