ﻻ يوجد ملخص باللغة العربية
In this paper, we work on the notion of k-synchronizability: a system is k-synchronizable if any of its executions, up to reordering causally independent actions, can be divided into a succession of k-bounded interaction phases. We show two results (both for mailbox and peer-to-peer automata): first, the reachability problem is decidable for k-synchronizable systems; second, the membership problem (whether a given system is k-synchronizable) is decidable as well. Our proofs fix several important issues in previous attempts to prove these two results for mailbox automata.
A communicating system is $k$-synchronizable if all of the message sequence charts representing the executions can be divided into slices of $k$ sends followed by $k$ receptions. It was previously shown that, for a fixed given $k$, one could decide w
In this work, we exploit the power of emph{unambiguity} for the complementation problem of Buchi automata by utilizing reduced run directed acyclic graphs (DAGs) over infinite words, in which each vertex has at most one predecessor. We then show how
The search for a proof of correctness and the search for counterexamples (bugs) are complementary aspects of verification. In order to maximize the practical use of verification tools it is better to pursue them at the same time. While this is well-u
We investigate the descriptional complexity of limited propagating Lindenmayer systems and their deterministic and tabled variants with respect to the number of rules and the number of symbols. We determine the decrease of complexity when the generat
We investigate the effects of structural perturbations of both, undirected and directed diffusive networks on their ability to synchronize. We establish a classification of directed links according to their impact on synchronizability. We focus on ad