ترغب بنشر مسار تعليمي؟ اضغط هنا

Runaway O-star Bow Shocks as Particle Accelerators? The Case of AE Aur revisited

63   0   0.0 ( 0 )
 نشر من قبل Blagoy Rangelov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of our Chandra/ACIS observations of the field centered on the fast, runaway O star AE Aur and its bow shock. Previous XMM-Newton observations revealed an X-ray blob near the IR arc tracing the bow shock, possibly a nonthermal source consistent with models of Inverse Compton scattering of dust IR photons by electrons accelerated at the shock. The new, subarcsecond resolution Chandra data, while confirming the presence of the XMM-Newton source, clearly indicate that the latter is neither extended nor coincident with the IR arc and strongly suggest it is a background AGN. Motivated by results published for the bow shock of BD+43 3654, we extended our study to the radio domain, by analyzing archival EVLA data. We find no radio emission from the AE Aur bow shock either. The corresponding upper limits for the absorbed (unabsorbed) X-ray flux of 5.9(7.8)x10^-15 erg/cm^2/s (3 sigma) and, in the radio range, of 2 mJy (1.4 GHz), and 0.4 mJy (5.0 GHz), are used to put constraints on model predictions for particle acceleration within the bow shock. In the classical framework of Diffusive Shock Acceleration, we find that the predicted X-ray and radio emission by the bow shock is at least two orders of magnitude below the current upper limits, consistent with the systematic non-detections of up to 60 stellar bow shocks. The only exception so far remains that of BD+43 3654, probably the result of its very large mass-loss rate among runaway O stars.

قيم البحث

اقرأ أيضاً

Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations towards the runaway stars $zeta$ Oph (Chandra and Suzaku) and BD+43$^{circ}$3654 (XMM-Newton) to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks, nonetheless, diffuse emission is detected in the vicinity of $zeta$ Oph. After a careful analysis of its spectral characteristics we conclude that this emission has a thermal nature with a plasma temperature of $T approx 2 times10^{6}$ K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43$^{circ}$3654 is puzzling as non-thermal emission has been reported in a previous work for this source.
115 - P. Gratier , J. Pety , P. Boisse 2014
Some runaway stars are known to display IR arc-like structures around them, resulting from their interaction with surrounding interstellar material. The properties of these features as well as the processes involved in their formation are still poorl y understood. We aim at understanding the physical mechanisms that shapes the dust arc observed near the runaway O star AEAur (HD34078). We obtained and analyzed a high spatial resolution map of the CO(1-0) emission that is centered on HD34078, and that combines data from both the IRAM interferometer and 30m single-dish antenna. The line of sight towards HD34078 intersects the outer part of one of the detected globulettes, which accounts for both the properties of diffuse UV light observed in the field and the numerous molecular absorption lines detected in HD34078s spectra, including those from highly excited H2 . Their modeled distance from the star is compatible with the fact that they lie on the 3D paraboloid which fits the arc detected in the 24 {mu}m Spitzer image. Four other compact CO globulettes are detected in the mapped area. These globulettes have a high density and linewidth, and are strongly pressure-confined or transient. The good spatial correlation between the CO globulettes and the IR arc suggests that they result from the interaction of the radiation and wind emitted by HD 34078 with the ambient gas. However, the details of this interaction remain unclear. A wind mass loss rate significantly larger than the value inferred from UV lines is favored by the large IR arc size, but does not easily explain the low velocity of the CO globulettes. The effect of radiation pressure on dust grains also meets several issues in explaining the observations. Further observational and theoretical work is needed to fully elucidate the processes shaping the gas and dust in bow shocks around runaway O stars. (Abridged)
83 - A. Schulz , M. Haupt , S. Klepser 2016
Runaway stars form bow shocks by sweeping up interstellar matter in their direction of motion. Theoretical models predict a spectrally wide non-thermal component reaching up to gamma-ray energies at a flux level detectable with current instruments. T hey were motivated by a detection of non-thermal radio emission from the bow shock of BD$+43^circ3654$ and a possible detection of non-thermal X-rays from AE Aurigae. A search in the high-energy regime using data from textit{Fermi}-LAT resulted in flux upper limits for 27 candidates listed in the first E-BOSS catalogue. We perform the first systematic search for TeV emission from bow shocks of runaway stars. Using all available archival H.E.S.S. I data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue. This catalogue comprises 73 bow shock candidates, 32 of which have been observed with the H.E.S.S. telescopes. None of the observed bow shock candidates shows significant emission in the H.E.S.S. energy range. The resulting upper limits are used to constrain current models for non-thermal emission from these objects.
Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of 5 bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.
Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the prod uction of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30 to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا