ﻻ يوجد ملخص باللغة العربية
The Event Horizon Telescope (EHT) recently produced the first horizon-scale image of a supermassive black hole. Expanding the array to include a 3-meter space telescope operating at >200 GHz enables mass measurements of many black holes, movies of black hole accretion flows, and new tests of general relativity that are impossible from the ground.
High-resolution imaging of supermassive black holes is now possible, with new applications to testing general relativity and horizon-scale accretion and relativistic jet formation processes. Over the coming decade, the EHT will propose to add new str
Very long baseline interferometry (VLBI) from the ground at millimeter wavelengths can resolve the black hole shadow around two supermassive black holes, Sagittarius A* and M87. The addition of modest telescopes in space would allow the combined arra
A 12-m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) i
The imaging fidelity of the Event Horizon Telescope (EHT) is currently determined by its sparse baseline coverage. In particular, EHT coverage is dominated by long baselines, and is highly sensitive to atmospheric conditions and loss of sites between
Searching for violations of the no-hair theorem (NHT) is a powerful way to test gravity, and more generally fundamental physics, particularly with regards to the existence of additional scalar fields. The first observation of a black hole (BH) shadow