ترغب بنشر مسار تعليمي؟ اضغط هنا

Berry Curvature Engineering by Gating Two-Dimensional Antiferromagnets

177   0   0.0 ( 0 )
 نشر من قبل Peizhe Tang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in tuning electronic, magnetic, and topological properties of two-dimensional (2D) magnets have opened a new frontier in the study of quantum physics and promised exciting possibilities for future quantum technologies. In this study, we find that the dual-gate technology can well tune the electronic and topological properties of antiferromagnetic (AFM) even septuple-layer (SL) MnBi$_2$Te$_4$ thin films. Under an out-of-plane electric field that breaks $mathcal{PT}$ symmetry, the Berry curvature of the thin film could be engineered efficiently, resulting in a huge change of anomalous Hall (AH) signal. Beyond the critical electric field, the double-SL MnBi$_2$Te$_4$ thin film becomes a Chern insulator with a high Chern number of 3. We further demonstrate that such 2D material can be used as an AFM switch via electric-field control of the AH signal. These discoveries inspire the design of low-power memory prototype for future AFM spintronic applications.



قيم البحث

اقرأ أيضاً

141 - Wenyu Xing , Luyi Qiu , Xirui Wang 2019
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a re sult of magnetic anisotropy. Furthermore, giant tunneling magnetoresistance and electrical control of magnetism have been reported. However, the potential of 2D van der Waals magnets for magnonics, magnon-based spintronics, has not been explored yet. Here, we report the experimental observation of long-distance magnon transport in quasi-twodimensional van der Waals antiferromagnet MnPS3, which demonstrates the 2D magnets as promising material candidates for magnonics. As the 2D MnPS3 thickness decreases, a shorter magnon diffusion length is observed, which could be attributed to the surface-impurity-induced magnon scattering. Our results could pave the way for exploring quantum magnonics phenomena and designing future magnonics devices based on 2D van der Waals magnets.
306 - Yang Zhang , Yan Sun , 2017
Noncentrosymmetric metals are anticipated to exhibit a $dc$ photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonl inear effects because they carry a large Berry curvature concentrated in small regions, i.e., near the Weyl points. We have implemented the semiclassical Berry curvature dipole formalism into an $ab~initio$ scheme and investigated the second-order nonlinear response for two representative groups of materials: the TaAs-family type-I WSMs and MoTe$_2$-family type-II WSMs. Both types of WSMs exhibited a Berry curvature dipole, in which type-II Weyl points are usually superior to the type-I because of the strong tilt. Corresponding nonlinear susceptibilities in several materials promise a nonlinear Hall effect in the $dc$ field limit, which is within the experimentally detectable range.
In two-dimensional insulators with time-reversal (TR) symmetry, a nonzero local Berry curvature of low-energy massive Dirac fermions can give rise to nontrivial spin and charge responses, even though the integral of the Berry curvature over all occup ied states is zero. In this work, we present a new effect induced by the electronic Berry curvature. By studying electron-phonon interactions in BaMnSb$_2$, a prototype two-dimensional Dirac material possessing two TR-related massive Dirac cones, we find that the nonzero local Berry curvature of electrons can induce a phonon angular momentum. The direction of this phonon angular momentum is locked to the phonon propagation direction, and thus we refer it as phonon helicity, in a way that is reminiscent of electron helicity in spin-orbit-coupled electronic systems. We discuss possible experimental probes of such phonon helicity.
We report the observation of the intrinsic damping-like spin-orbit torque (SOT) arising from the Berry curvature in metallic-magnet/CuO$_x$ heterostructures. We show that a robust damping-like SOT, an order of magnitude larger than a field-like SOT, is generated in the heterostructure despite the absence of the bulk spin-orbit effect in the CuO$_x$ layer. Furthermore, by tuning the interface oxidation level, we demonstrate that the field-like SOT changes drastically and even switches its sign, which originates from oxygen modulated spin-dependent disorder. These results provide an important information for fundamental understanding of the physics of the SOTs.
Geometric phases in condensed matter play a central role in topological transport phenomena such as the quantum, spin and anomalous Hall effect (AHE). In contrast to the quantum Hall effect - which is characterized by a topological invariant and robu st against perturbations - the AHE depends on the Berry curvature of occupied bands at the Fermi level and is therefore highly sensitive to subtle changes in the band structure. A unique platform for its manipulation is provided by transition metal oxide heterostructures, where engineering of emergent electrodynamics becomes possible at atomically sharp interfaces. We demonstrate that the Berry curvature and its corresponding vector potential can be manipulated by interface engineering of the correlated itinerant ferromagnet SrRuO$_3$ (SRO). Measurements of the AHE reveal the presence of two interface-tunable spin-polarized conduction channels. Using theoretical calculations, we show that the tunability of the AHE at SRO interfaces arises from the competition between two topologically non-trivial bands. Our results demonstrate how reconstructions at oxide interfaces can be used to control emergent electrodynamics on a nanometer-scale, opening new routes towards spintronics and topological electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا