ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and kinematics of the Taurus star-forming region from Gaia-DR2 and VLBI astrometry

125   0   0.0 ( 0 )
 نشر من قبل Phillip Galli Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims:We take advantage of the second data release of the Gaia space mission and the state-of-the-art astrometry delivered from very long baseline interferometry observations to revisit the structure and kinematics of the nearby Taurus star-forming region. Methods: We apply a hierarchical clustering algorithm for partitioning the stars in our sample into groups (i.e., clusters) that are associated with the various molecular clouds of the complex, and derive the distance and spatial velocity of individual stars and their corresponding molecular clouds. Results: We show that the molecular clouds are located at different distances and confirm the existence of important depth effects in this region reported in previous studies. For example, we find that the L 1495 molecular cloud is located at $d=129.9^{+0.4}_{-0.3}$ pc, while the filamentary structure connected to it (in the plane of the sky) is at $d=160.0^{+1.2}_{-1.2}$ pc. We report B 215 and L 1558 as the closest ($d=128.5^{+1.6}_{-1.6}$ pc) and most remote ($d=198.1^{+2.5}_{-2.5}$ pc) substructures of the complex, respectively. The median inter-cloud distance is 25 pc and the relative motion of the subgroups is on the order of a few km/s. We find no clear evidence for expansion (or contraction) of the Taurus complex, but signs of the potential effects of a global rotation. Finally, we compare the radial velocity of the stars with the velocity of the underlying $^{13}$CO molecular gas and report a mean difference of $0.04pm0.12$ km/s (with r.m.s. of 0.63 km/s) confirming that the stars and the gas are tightly coupled.



قيم البحث

اقرأ أيضاً

With the publication of Gaia DR2, 1.3 billion stars now have public parallax and proper motion measurements. In this contribution, we compare the results for sources that have both optical and radio measurements, focusing on circumstellar masers. For these large, variable and bright AGB stars, the VLBI astrometry results can be more robust. Moreover, there are a number of applications where VLBI astrometry provides unique data for studying stellar populations and Galactic structure. The BeSSel project not only provides parallax and proper motions at much larger distances than Gaia can reach, but it also uniquely samples the spiral arms of the Galaxy. The evolved stars in the BAaDE sample can potentially constrain the dynamics and stellar content of the inner bulge and bar of the Milky Way, not reachable in the optical.
Context. Taurus represents an ideal region to study the three-dimensional distribution of the young stellar population and relate it to the associated molecular cloud. Aims. The second Gaia data release (DR2) enables us to investigate the Taurus comp lex in three dimensions, starting from a previously defined robust membership. The molecular cloud structured in filaments can be traced in emission using the public far-infrared maps from Herschel. Methods. From a compiled catalog of spectroscopically confirmed members, we analyze the 283 sources with reliable parallax and proper motions in the Gaia DR2 archive. We fit the distribution of parallaxes and proper motions with multiple populations described by multivariate Gaussians. We compute the cartesian Galactic coordinates (X,Y,Z) and, for the populations associated with the main cloud, also the galactic space velocity (U,V,W). We discuss the spatial distribution of the populations in relation to the structure of the filamentary molecular cloud traced by Herschel. Results. We discover the presence of six populations which are all well defined in parallax and proper motions, with the only exception being Taurus D. The derived distances range between 130 and 160 pc. We do not find a unique relation between stellar population and the associated molecular cloud: while the stellar population seems to be on the cloud surface, both lying at similar distances, this is not the case when the molecular cloud is structured in filaments. Taurus B is probably moving in the direction of Taurus A, while Taurus E appears to be moving towards them. Conclusions. The Taurus region is the result of a complex star formation history which most probably occurred in clumpy and filamentary structures that are evolving independently.
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is re visited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
We present new trigonometric parallaxes and proper motions of young stellar objects in the Taurus molecular cloud complex from observations collected with the Very Long Baseline Array as part of the Goulds Belt Distances Survey (GOBELINS). We detecte d 26 young stellar objects and derived trigonometric parallaxes for 18 stars with an accuracy of 0.3$%$ to a few percent. We modeled the orbits of six binaries and determined the dynamical masses of the individual components in four of these systems (V1023 Tau, T Tau S, V807 Tau and V1000 Tau). Our results are consistent with the first trigonometric parallaxes delivered by the Gaia satellite and reveal the existence of significant depth effects. We find that the central portion of the dark cloud Lynds 1495 is located at $d=129.5pm 0.3$ pc while the B 216 clump in the filamentary structure connected to it is at $d=158.1pm 1.2$ pc. The closest and remotest stars in our sample are located at $d=126.6pm 1.7$ pc and $d=162.7pm 0.8$ pc yielding a distance difference of about 36 pc. We also provide a new distance estimate for HL Tau that was recently imaged. Finally, we compute the spatial velocity of the stars with published radial velocity and investigate the kinematic properties of the various clouds and gas structures in this region.
283 - G. Aresu , I. Kamp , R. Meijerink 2014
The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا