ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic Emission post Spinning Black Hole-Magnetized Neutron Star Mergers

156   0   0.0 ( 0 )
 نشر من قبل Zigao Dai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a binary composed of a spinning black hole (BH) (with mass $gtrsim 7M_odot$) and a strongly magnetized neutron star (NS) (with surface magnetic field strength $B_{rm S,NS}gtrsim10^{12}$,G and mass $sim 1.4M_odot$), the NS as a whole will possibly eventually plunge into the BH. During the inspiral phase, the spinning BH could be charged to the Wald charge quantity $Q_{rm W}$ until merger in an electro-vacuum approximation. During the merger, if the spinning charged BH creates its own magnetosphere due to an electric field strong enough for pair cascades to spark, the charged BH would transit from electro-vacuum to force-free cases and could discharge in a time $gtrsim1~{rm ms}$. As the force-free magnetosphere is full of a highly conducting plasma, the magnetic flux over the NSs caps would be retained outside the BHs event horizon under the frozen-in condition. Based on this scenario, we here investigate three possible energy-dissipation mechanisms that could produce electromagnetic (EM) counterparts in a time interval of the BHs discharge post a BH-NS merger-induced gravitational wave event: (1) magnetic reconnection at the BHs poles would occur, leading to a millisecond bright EM signal, (2) a magnetic shock in the zone of closed magnetic field lines due to the detachment and reconnection of the entire BH magnetic field would probably produce a bright radio emission, e.g., a fast radio burst, and (3) the Blandford-Znajek mechanism would extract the BHs rotational energy, giving rise to a millisecond-duration luminous high-energy burst. We also calculate the luminosities due to these mechanisms as a function of BHs spin for different values of $B_{rm S,NS}$.



قيم البحث

اقرأ أيضاً

Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv ely powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
Detections of gravitational waves (GWs) may soon uncover the signal from the coalescence of a black hole - neutron star (BHNS) binary, that is expected to be accompanied by an electromagnetic (EM) signal. In this paper, we present a composite semi-an alytical model to predict the properties of the expected EM counterpart from BHNS mergers, focusing on the kilonova emission and on the gamma-ray burst afterglow. Four main parameters rule the properties of the EM emission: the NS mass $M_mathrm{NS}$, its tidal deformability $Lambda_mathrm{NS}$, the BH mass and spin. Only for certain combinations of these parameters an EM counterpart is produced. Here we explore the parameter space, and construct light curves, analysing the dependence of the EM emission on the NS mass and tidal deformability. Exploring the NS parameter space limiting to $M_mathrm{NS}-Lambda_mathrm{NS}$ pairs described by a physically motivated equations of state (EoS), we find that the brightest EM counterparts are produced in binaries with low mass NSs (fixing the BH properties and the EoS). Using constraints on the NS EoS from GW170817, our modeling shows that the emission falls in a narrow range of absolute magnitudes. Within the range of explored parameters, light curves and peak times are not dissimilar to those from NSNS mergers, except in the B band. The lack of an hyper/supra-massive NS in BHNS coalescences causes a dimming of the blue kilonova emission in absence of the neutrino interaction with the ejecta.
Mergers of black hole (BH) and neutron star (NS) binaries are of interest since the emission of gravitational waves (GWs) can be followed by an electromagnetic (EM) counterpart, which could power short gamma-ray bursts. Until now, LIGO/Virgo has only observed a candidate BH-NS event, GW190426_152155, which was not followed by any EM counterpart. We discuss how the presence (absence) of a remnant disk, which powers the EM counterpart, can be used along with spin measurements by LIGO/Virgo to derive a lower (upper) limit on the radius of the NS. For the case of GW190426_152155, large measurement errors on the spin and mass ratio prevent from placing an upper limit on the NS radius. Our proposed method works best when the aligned component of the BH spin (with respect to the orbital angular momentum) is the largest, and can be used to complement the information that can be extracted from the GW signal to derive valuable information on the NS equation of state.
Black hole-neutron star (BHNS) binaries are amongst promising candidates for the joint detection of electromagnetic (EM) signals with gravitational waves (GWs) and are expected to be detected in the near future. Here we study the effect of the BHNS b inary parameters on the merger ejecta properties and associated EM signals. We estimate the remnant disk and unbound ejecta masses for BH mass and spin distributions motivated from the observations of transient low-mass X-ray binaries (LMXBs) and specific NS equation of state (EoS). The amount of r-process elements synthesised in BHNS mergers is estimated to be a factor of $sim 10^{2}-10^{4}$ smaller than BNS mergers, due to the smaller dynamical ejecta and merger rates for the former. We compute the EM luminosities and light curves for the early- and late-time emissions from the ultra-relativistic jet, sub-relativistic dynamical ejecta and wind, and the mildly-relativistic cocoon for typical ejecta parameters. We then evaluate the low-latency EM follow-up rates of the GW triggers in terms of the GW detection rate $dot{N}_{GW}$ for current telescope sensitivities and typical BHNS binary parameters to find that most of the EM counterparts are detectable for high BH spin, small BH mass and stiffer NS EoS when NS disruption is significant. Based on the relative detection rates for given binary parameters, we find the ease of EM follow-up to be: ejecta afterglow $>$ cocoon afterglow $gtrsim$ jet prompt $>$ ejecta macronova $>$ cocoon prompt $>$ jet afterglow $>>$ wind macronova $>>$ wind afterglow.
156 - M. Bulla , K. Kyutoku , M. Tanaka 2020
We predict linear polarization for a radioactively-powered kilonova following the merger of a black hole and a neutron star. Specifically, we perform 3-D Monte Carlo radiative transfer simulations for two different models, both featuring a lanthanide -rich dynamical ejecta component from numerical-relativity simulations while only one including an additional lanthanide-free disk wind component. We calculate polarization spectra for nine different orientations at 1.5, 2.5 and 3.5 d after the merger and in the $0.1-2,mu$m wavelength range. We find that both models are polarized at a detectable level 1.5 d after the merger while show negligible levels thereafter. The polarization spectra of the two models are significantly different. The model lacking a disk wind shows no polarization in the optical, while a signal increasing at longer wavelengths and reaching $sim1%-6%$ at $2,mu$m depending on the orientation. The model with a disk-wind component, instead, features a characteristic double-peak polarization spectrum with one peak in the optical and the other in the infrared. Polarimetric observations of future events will shed light on the debated neutron richness of the disk-wind component. The detection of optical polarization would unambiguously reveal the presence of a lanthanide-free disk-wind component, while polarization increasing from zero in the optical to a peak in the infrared would suggest a lanthanide-rich composition for the whole ejecta. Future polarimetric campaigns should prioritize observations in the first $sim48$ hours and in the $0.5-2,mu$m range, where polarization is strongest, but also explore shorter wavelengths/later times where no signal is expected from the kilonova and the interstellar polarization can be safely estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا