ﻻ يوجد ملخص باللغة العربية
We find the complete equivalence group of a class of (1+1)-dimensional second-order evolution equations, which is infinite-dimensional. The equivariant moving frame methodology is invoked to construct, in the regular case of the normalization procedure, a moving frame for a group related to the equivalence group in the context of equivalence transformations among equations of the class under consideration. Using the moving frame constructed, we describe the algebra of differential invariants of the former group by obtaining a minimum generating set of differential invariants and a complete set of independent operators of invariant differentiation.
We carry out the enhanced group classification of a class of (1+1)-dimensional nonlinear diffusion-reaction equations with gradient-dependent diffusivity using the two-step version of the method of furcate splitting. For simultaneously finding the eq
We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equat
This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal re
Lie group method provides an efficient tool to solve a differential equation. This paper suggests a fractional partner for fractional partial differential equations using a fractional characteristic method. A space-time fractional diffusion equation
We consider the Fermi-Pasta-Ulam-Tsingou (FPUT) chain composed by $N gg 1$ particles and periodic boundary conditions, and endow the phase space with the Gibbs measure at small temperature $beta^{-1}$. Given a fixed ${1leq m ll N}$, we prove that the