ﻻ يوجد ملخص باللغة العربية
This is an overview article. After an introduction to convenient calculus in infinite dimensions, the foundational material for manifolds of mappings is presented. The central character is the smooth convenient manifold $C^{infty}(M,N)$ of all smooth mappings from a finite dimensional Whitney manifold germ $M$ into a smooth manifold $N$. A Whitney manifold germ is a smooth (in the interior) manifold with a very general boundary, but still admitting a continuous Whitney extension operator. This notion is developed here for the needs of geometric continuum mechanics.
This is an overview article. In his Habilitationsvortrag, Riemann described infinite dimensional manifolds parameterizing functions and shapes of solids. This is taken as an excuse to describe convenient calculus in infinite dimensions which allows
Given smooth manifolds $M_1,ldots, M_n$ (which may have a boundary or corners), a smooth manifold $N$ modeled on locally convex spaces and $alphain({mathbb N}_0cup{infty})^n$, we consider the set $C^alpha(M_1timescdotstimes M_n,N)$ of all mappings $f
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different meth
Let $X$ be a compact orientable non-Haken 3-manifold modeled on the Thurston geometry $text{Nil}$. We show that the diffeomorphism group $text{Diff}(X)$ deformation retracts to the isometry group $text{Isom}(X)$. Combining this with earlier work by m
Given a Riemannian spin^c manifold whose boundary is endowed with a Riemannian flow, we show that any solution of the basic Dirac equation satisfies an integral inequality depending on geometric quantities, such as the mean curvature and the ONeill t