ترغب بنشر مسار تعليمي؟ اضغط هنا

Splitting symplectic fillings

90   0   0.0 ( 0 )
 نشر من قبل Austin Christian
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the mixed tori which appear in the second authors JSJ-type decomposition theorem for symplectic fillings of contact manifolds. Mixed tori are convex surfaces in contact manifolds which may be used to decompose symplectic fillings. We call our more general surfaces splitting surfaces, and show that the decomposition of symplectic fillings continues to hold. Specifically, given a strong or exact symplectic filling of a contact manifold which admits a splitting surface, we produce a new symplectic manifold which strongly or exactly fills its boundary, and which is related to the original filling by Liouville surgery.



قيم البحث

اقرأ أيضاً

We classify symplectically foliated fillings of certain contact foliated manifolds. We show that up to symplectic deformation, the unique minimal symplectically foliated filling of the foliated sphere cotangent bundle of the Reeb foliation in the 3-s phere is the associated disk cotangent bundle. En route to the proof, we study another foliated manifold, namely the product of a circle and an annulus with almost horizontal foliation. In this case, the foliated unit cotangent bundle does not have a unique minimal symplectic filling. We classify the foliated fillings of this manifold up to symplectic deformation equivalence using combinatorial invariants of the filling.
147 - Austin Christian 2019
We use Menkes JSJ-type decomposition theorem for symplectic fillings to reduce the classification of strong and exact symplectic fillings of virtually overtwisted torus bundles to the same problem for tight lens spaces. For virtually overtwisted stru ctures on elliptic or parabolic torus bundles, this gives a complete classification. For virtually overtwisted structures on hyperbolic torus bundles, we show that every strong or exact filling arises from a filling of a tight lens space via round symplectic 1-handle attachment, and we give a condition under which distinct tight lens space fillings yield the same torus bundle filling.
An exact Lagrangian submanifold $L$ in the symplectization of standard contact $(2n-1)$-space with Legendrian boundary $Sigma$ can be glued to itself along $Sigma$. This gives a Legendrian embedding $Lambda(L,L)$ of the double of $L$ into contact $(2 n+1)$-space. We show that the Legendrian isotopy class of $Lambda(L,L)$ is determined by formal data: the manifold $L$ together with a trivialization of its complexified tangent bundle. In particular, if $L$ is a disk then $Lambda(L,L)$ is the Legendrian unknot.
133 - Marco Golla , Paolo Lisca 2014
We consider a large family F of torus bundles over the circle, and we use recent work of Li--Mak to construct, on each Y in F, a Stein fillable contact structure C. We prove that (i) each Stein filling of (Y,C) has vanishing first Chern class and fir st Betti number, (ii) if Y in F is elliptic then all Stein fillings of (Y,C) are pairwise diffeomorphic and (iii) if Y in F is parabolic or hyperbolic then all Stein fillings of (Y,C) share the same Betti numbers and fall into finitely many diffeomorphism classes. Moreover, for infinitely many hyperbolic torus bundles Y in F we exhibit non-homotopy equivalent Stein fillings of (Y,C).
394 - Claude Viterbo 2014
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is the sequence $H(kx,y,q,p)$ where the limit is of the type ${bar H}(y,q,p)$ and thus yields an effective Hamiltonian. We give here the proof of the convergence, and the first properties of the homogenization operator, and give some immediate consequences for solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that the function $bar H$ coincides with Mathers $alpha$ function which gives a new proof of its symplectic invariance proved by P. Bernard. A previous version of this paper relied on the former On the capacity of Lagrangians in $T^*T^n$ which has been withdrawn. The present version of Symplectic Homogenization does not rely on it anymore.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا