ترغب بنشر مسار تعليمي؟ اضغط هنا

A new approach to optimal stopping for Hunt processes

378   0   0.0 ( 0 )
 نشر من قبل Bernt {\\O}ksendal
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a new verification theorem for optimal stopping problems for Hunt processes. The approach is based on the Fukushima-Dynkin formula, and its advantage is that it allows us to verify that a given function is the value function without using the viscosity solution argument. Our verification theorem works in any dimension. We illustrate our results with some examples of optimal stopping of reflected diffusions and absorbed diffusions.



قيم البحث

اقرأ أيضاً

174 - Diana Dorobantu 2008
Our purpose is to study a particular class of optimal stopping problems for Markov processes. We justify the value function convexity and we deduce that there exists a boundary function such that the smallest optimal stopping time is the first time w hen the Markov process passes over the boundary depending on time. Moreover, we propose a method to find the optimal boundary function.
In this paper we study randomized optimal stopping problems and consider corresponding forward and backward Monte Carlo based optimisation algorithms. In particular we prove the convergence of the proposed algorithms and derive the corresponding convergence rates.
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide ntical agent dynamics and an associated global quadratic cost functional, our objective is to design suboptimal distributed control laws that guarantee the controlled network to reach consensus and the associated cost to be smaller than an a priori given upper bound. We first analyze the suboptimality for a given linear system and then apply the results to linear multiagent systems. Two design methods are then provided to compute such suboptimal distributed controllers, involving the solution of a single Riccati inequality of dimension equal to the dimension of the agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian. Furthermore, we relax the requirement of exact knowledge of the smallest nonzero and largest eigenvalue of the graph Laplacian by using only lower and upper bounds on these eigenvalues. Finally, a simulation example is provided to illustrate our design method.
This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system with identical agent dynamics and an associated $mathcal{H}_2$ cost functional, our aim is to design a distributed diffusive static protocol such that the protocol achieves state synchronization for the controlled network and such that the associated cost is smaller than an a priori given upper bound. We first analyze the $mathcal{H}_2$ performance of linear systems and then apply the results to linear multi-agent systems. Two design methods are provided to compute such a suboptimal distributed protocol. For each method, the expression for the local control gain involves a solution of a single Riccati inequality of dimension equal to the dimension of the individual agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian.
We propose a neural network approach for solving high-dimensional optimal control problems. In particular, we focus on multi-agent control problems with obstacle and collision avoidance. These problems immediately become high-dimensional, even for mo derate phase-space dimensions per agent. Our approach fuses the Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman (HJB) approaches and parameterizes the value function with a neural network. Our approach yields controls in a feedback form for quick calculation and robustness to moderate disturbances to the system. We train our model using the objective function and optimality conditions of the control problem. Therefore, our training algorithm neither involves a data generation phase nor solutions from another algorithm. Our model uses empirically effective HJB penalizers for efficient training. By training on a distribution of initial states, we ensure the controls optimality is achieved on a large portion of the state-space. Our approach is grid-free and scales efficiently to dimensions where grids become impractical or infeasible. We demonstrate our approachs effectiveness on a 150-dimensional multi-agent problem with obstacles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا