ترغب بنشر مسار تعليمي؟ اضغط هنا

Levy walk revisited: Hermite polynomial expansion approach

369   0   0.0 ( 0 )
 نشر من قبل Weihua Deng Professor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integral transform method (Fourier or Laplace transform, etc) is more often effective to do the theoretical analysis for the stochastic processes. However, for the time-space coupled cases, e.g., Levy walk or nonlinear cases, integral transform method may fail to be so strong or even do not work again. Here we provide Hermite polynomial expansion approach, being complementary to integral transform method. Some statistical observables of general Levy walks are calculated by the Hermite polynomial expansion approach, and the comparisons are made when both the integral transform method and the newly introduced approach work well.

قيم البحث

اقرأ أيضاً

In this article we generalize the classical Edgeworth expansion for the probability density function (PDF) of sums of a finite number of symmetric independent identically distributed random variables with a finite variance to sums of variables with a n infinite variance which converge by the generalized central limit theorem to a Levy $alpha$-stable density function. Our correction may be written by means of a series of fractional derivatives of the Levy and the conjugate Levy PDFs. This series expansion is general and applies also to the Gaussian regime. To describe the terms in the series expansion, we introduce a new family of special functions and briefly discuss their properties. We implement our generalization to the distribution of the momentum for atoms undergoing Sisyphus cooling, and show the improvement of our leading order approximation compared to previous approximations. In vicinity of the transition between L{e}vy and Gauss behaviors, convergence to asymptotic results slows down.
Levy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, r obots, and viruses. We here investigate a key feature of LWs, their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some long-standing puzzles around LWs.
145 - Pengbo Xu , Weihua Deng 2017
Levy walk is a fundamental model with applications ranging from quantum physics to paths of animal foraging. Taking animal foraging as an example, a natural idea that comes to ones mind is to introduce the multiple internal states for dealing with th e dependence of the PDF of waiting time on the energy of the animal and richness of the food at a particular location, etc; the framework can also be used to model the moving trajectories of smart animals without returning to the directions or locations which they come from immediately. After building the Levy walk model with multiple internal states and deriving the governing equation of the distribution of the positions of the particles, some applications are discussed with specific transition matrices. The type of diffusion for non-immediately-repeating L{e}vy walk is uncovered, and the distribution and average of first passage time are numerically simulated.
85 - Miquel Montero 2019
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the features of a simple random walk, shows other traits that one would associate with a biased random walk and, at the same time, presents new properties not related with either of them. In particular, we show how the system is not fully ergodic, as not every statistic can be estimated from a single realization of the process. We further give a geometric interpretation for the origin of these irregular transition probabilities.
We consider one-dimensional discrete-time random walks (RWs) with arbitrary symmetric and continuous jump distributions $f(eta)$, including the case of Levy flights. We study the expected maximum ${mathbb E}[M_n]$ of bridge RWs, i.e., RWs starting an d ending at the origin after $n$ steps. We obtain an exact analytical expression for ${mathbb E}[M_n]$ valid for any $n$ and jump distribution $f(eta)$, which we then analyze in the large $n$ limit up to second leading order term. For jump distributions whose Fourier transform behaves, for small $k$, as $hat f(k) sim 1 - |a, k|^mu$ with a Levy index $0<mu leq 2$ and an arbitrary length scale $a>0$, we find that, at leading order for large $n$, ${mathbb E}[M_n]sim a, h_1(mu), n^{1/mu}$. We obtain an explicit expression for the amplitude $h_1(mu)$ and find that it carries the signature of the bridge condition, being different from its counterpart for the free random walk. For $mu=2$, we find that the second leading order term is a constant, which, quite remarkably, is the same as its counterpart for the free RW. For generic $0< mu < 2$, this second leading order term is a growing function of $n$, which depends non-trivially on further details of $hat f (k)$, beyond the Levy index $mu$. Finally, we apply our results to compute the mean perimeter of the convex hull of the $2d$ Rouse polymer chain and of the $2d$ run-and-tumble particle, as well as to the computation of the survival probability in a bridge version of the well-known lamb-lion capture problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا