ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Density Estimation Tools in Python and R with Applications to Photometric Redshifts and Likelihood-Free Cosmological Inference

68   0   0.0 ( 0 )
 نشر من قبل Niccol\\`o Dalmasso
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known in astronomy that propagating non-Gaussian prediction uncertainty in photometric redshift estimates is key to reducing bias in downstream cosmological analyses. Similarly, likelihood-free inference approaches, which are beginning to emerge as a tool for cosmological analysis, require a characterization of the full uncertainty landscape of the parameters of interest given observed data. However, most machine learning (ML) or training-based methods with open-source software target point prediction or classification, and hence fall short in quantifying uncertainty in complex regression and parameter inference settings. As an alternative to methods that focus on predicting the response (or parameters) $mathbf{y}$ from features $mathbf{x}$, we provide nonparametric conditional density estimation (CDE) tools for approximating and validating the entire probability density function (PDF) $mathrm{p}(mathbf{y}|mathbf{x})$ of $mathbf{y}$ given (i.e., conditional on) $mathbf{x}$. As there is no one-size-fits-all CDE method, the goal of this work is to provide a comprehensive range of statistical tools and open-source software for nonparametric CDE and method assessment which can accommodate different types of settings and be easily fit to the problem at hand. Specifically, we introduce four CDE software packages in $texttt{Python}$ and $texttt{R}$ based on ML prediction methods adapted and optimized for CDE: $texttt{NNKCDE}$, $texttt{RFCDE}$, $texttt{FlexCode}$, and $texttt{DeepCDE}$. Furthermore, we present the $texttt{cdetools}$ package, which includes functions for computing a CDE loss function for tuning and assessing the quality of individual PDFs, along with diagnostic functions. We provide sample code in $texttt{Python}$ and $texttt{R}$ as well as examples of applications to photometric redshift estimation and likelihood-free cosmological inference via CDE.

قيم البحث

اقرأ أيضاً

Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelih ood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (textsc{delfi}), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as $sim 10^4$ simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.
Photometric redshifts (photo-zs) provide an alternative way to estimate the distances of large samples of galaxies and are therefore crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised ma chine learning (ML) methods capable to interpolate the knowledge gained by means of spectroscopical data have proven to be very effective. METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) is a novel method designed to provide a reliable PDF (Probability density Function) of the error distribution of photometric redshifts predicted by ML methods. The method is implemented as a modular workflow, whose internal engine for photo-z estimation makes use of the MLPQNA neural network (Multi Layer Perceptron with Quasi Newton learning rule), with the possibility to easily replace the specific machine learning model chosen to predict photo-zs. After a short description of the software, we present a summary of results on public galaxy data (Sloan Digital Sky Survey - Data Release 9) and a comparison with a completely different method based on Spectral Energy Distribution (SED) template fitting.
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based o n the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-zs and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDFs derived from a traditional SED template fitting method (Le Phare).
119 - Umberto Picchini 2016
A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood func tion of model parameters. While SAEM is best suited for models having a tractable complete likelihood function, its application to moderately complex models is a difficult or even impossible task. We show how to construct a likelihood-free version of SAEM by using the synthetic likelihood paradigm. Our method is completely plug-and-play, requires almost no tuning and can be applied to both static and dynamic models. Four simulation studies illustrate the method, including a stochastic differential equation model, a stochastic Lotka-Volterra model and data from $g$-and-$k$ distributions. MATLAB code is available as supplementary material.
This document is an invited chapter covering the specificities of ABC model choice, intended for the incoming Handbook of ABC by Sisson, Fan, and Beaumont (2017). Beyond exposing the potential pitfalls of ABC based posterior probabilities, the review emphasizes mostly the solution proposed by Pudlo et al. (2016) on the use of random forests for aggregating summary statistics and and for estimating the posterior probability of the most likely model via a secondary random fores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا