ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining Surface Phase Diagrams Including Anharmonic Effects

68   0   0.0 ( 0 )
 نشر من قبل Luca Ghiringhelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a massively parallel replica-exchange grand-canonical sampling algorithm to simulate materials at realistic conditions, in particular surfaces and clusters in reactive atmospheres. Its purpose is to determine in an automated fashion equilibrium phase diagrams for a given potential-energy surface (PES) and for any observable sampled in the grand-canonical ensemble. The approach enables an unbiased sampling of the phase space and is embarrassingly parallel. It is demonstrated for a model of Lennard-Jones system describing a surface in contact with a gas phase. Furthermore, the algorithm is applied to Si$_M$ clusters ($M=2, 4$) in contact with an H$_{2}$ atmosphere, with all interactions described at the textit{ab initio} level, i.e., via density-functional theory, with the PBE gradient-corrected exchange-correlation functional. We identify the most thermodynamically stable phases at finite $T, p$(H$_{2}$) conditions.



قيم البحث

اقرأ أيضاً

We extend the nested sampling algorithm to simulate materials under periodic boundary and constant pressure conditions, and show how it can be used to determine the complete equilibrium phase diagram, for a given potential energy function, efficientl y and in a highly automated fashion. The only inputs required are the composition and the desired pressure and temperature ranges, in particular, solid-solid phase transitions are recovered without any a priori knowledge about the structure of solid phases. We benchmark and showcase the algorithm on the periodic Lennard-Jones system, aluminium and NiTi.
We develop a method to efficiently construct phase diagrams using machine learning. Uncertainty sampling (US) in active learning is utilized to intensively sample around phase boundaries. Here, we demonstrate constructions of three known experimental phase diagrams by the US approach. Compared with random sampling, the US approach decreases the number of sampling points to about 20%. In particular, the reduction rate is pronounced in more complicated phase diagrams. Furthermore, we show that using the US approach, undetected new phase can be rapidly found, and smaller number of initial sampling points are sufficient. Thus, we conclude that the US approach is useful to construct complicated phase diagrams from scratch and will be an essential tool in materials science.
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111) surface were obtained by the total energy minimization method within the local density approximation (LDA). Optical functions were calculated within the Random Phase Approximation (RPA) approach. Contribution of the surface states to optical losses was studied by calculations of the dielectric function of bare Ag (111) surface. Substantial modifications of the real and imaginary parts of the dielectric functions spectra in the near infrared and visible spectral regions, caused by surface states and molecular adsorption, were obtained. The results are discussed in comparison with available experimental data.
We investigate the harmonic and anharmonic contributions to the phonon spectrum of lead telluride, and perform a complete characterization of how the anharmonic effects dominate the phonons in PbTe as temperature increases. This effect is the stronge st factor in the favorable thermoelectric properties of PbTe: an optical-acoustic phonon band crossing reduces the speed of sound and the intrinsic thermal conductivity. We present the detailed temperature dependence of the dispersion relation and compare our calculated neutron scattering cross section with recent experimental measurements. We analyze the thermal resistivitys variation with temperature and clarify misconceptions about existing experimental literature. This quantitative prediction opens the way to phonon phase space engineering, to tailor the lifetimes of crucial heat carrying phonons.
Electric and magnetic properties of multiferroic GdMn2O5 in external magnetic fields were investigated to map out the magnetoelectric phases in this material. Due to strong magnetoelectric coupling, the dielectric permittivity is highly sensitive to phase boundaries in GdMn2O5, which allowed to construct the field-temperature phase diagrams. Several phase transitions are observed which are strongly field-dependent with respect to field orientation and strength. The phase diagram for a magnetic field along the crystallographic a-axis corresponds well to a polarization step, as induced by 90 degree rotation of Gd magnetic moments. Our results support the model of two ferroelectric sublattices, Mn-Mn and Gd-Mn with strong R-Mn (4f-3d) interaction for the polarization in RMn2O5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا