ﻻ يوجد ملخص باللغة العربية
Abrikosov vortex contains magnetic field and circulating currents that decay at a short range $lambda sim 100$ nm. However, the vortex can induce a long range Josephson phase shift at distances $rsimmu$m$gglambda$. The mechanism of this puzzling phenomenon is not clearly understood. Here we present a systematic study of vortex-induced phase shift in planar Josephson junctions. We make two key observations: (i) The cutoff effect: although vortex-induce phase shift is a long-range phenomenon, it is terminated by the junction and does not persists beyond it. (ii) A crossover from linear to superlinear dependence of the phase shift on the vortex polar angle occurs upon approaching of the vortex to the junction. The crossover occurs at a distance comparable with the penetration depth. This, together with theoretical and numerical analysis of the problem, allows unambiguous identification of two distinct and independent mechanisms. The short range mechanism is due to circulating vortex currents {it inside} superconducting electrodes without involvement of magnetic field. The long range mechanism is due to stray magnetic fields {it outside} electrodes without circulating vortex currents. We argue that understanding of controlling parameters of vortex-induced Josephson phase shift can be used for development of compact and fast electronic devices with low dissipation power.
At the surface of a d-wave superconductor, a zero-energy peak in the quasiparticle spectrum can be observed. This peak appears due to Andreev bound states and is maximal if the nodal direction of the d-wave pairing potential is perpendicular to the b
We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectifi
In long Josephson junctions with multiple discontinuities of the Josephson phase, fractional vortex molecules are spontaneously formed. At each discontinuity point a fractional Josephson vortex carrying a magnetic flux $|Phi|<Phi_0$, $Phi_0approx 2.0
The effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate, $W$, is studied in a complete phase diagram of a 2D superconductor above the upper critical field line $H_{c2}(T)$ . In the region of relatively high temperatures and
We report theoretical and experimental work on the development of a vortex qubit based on a microshort in an annular Josephson junction. The microshort creates a potential barrier for the vortex, which produces a double-well potential under the appli