ﻻ يوجد ملخص باللغة العربية
We demonstrate on the example of the dc+ac driven overdamped Frenkel-Kontorova model that an easily calculable measure of complexity can be used for the examination of Shapiro steps in presence of thermal noise. In real systems, thermal noise causes melting or even disappearance of Shapiro steps, which makes their analysis in the standard way from the response function difficult. Unlike in the conventional approach, here, by calculating the Kolmogorov complexity of certain areas in the response function we were able to detect Shapiro steps, measure their size with desired precision and examine their temperature dependence. The aim of this work is to provide scientists, particularly experimentalists, an unconventional but a practical and easy tool for examination of Shapiro steps in real systems.
We study the transport properties of a superconductor-quantum spin Hall insulator-superconductor (S-QSHI-S) hybrid system in the presence of a microwave radiation. Instead of adiabatic analysis or using the resistively shunted junction model, we star
The demonstration of the non-Abelian properties of Majorana bound states (MBS) is a crucial step toward topological quantum computing. We theoretically investigate how Majorana fusion rules manifest themselves in the current-voltage characteristics o
The fractional Josephson effect has been observed in many instances as a signature of a topological superconducting state containing zero-energy Majorana modes. We present a nontopological scenario which can produce a fractional Josephson effect gene
We treat theoretically Shapiro steps in tunnel Josephson junctions with spatially alternating critical current density. Explicit analytical formulas for the width of the first integer (normal) and half-integer (anomalous) Shapiro steps are derived fo
Majorana zero modes are predicted in several solid state systems such as hybrid superconductor-semiconductor structures and topological insulators coupled to superconductors. One of the expected signatures of Majorana modes is the fractional 4$pi$ Jo