ﻻ يوجد ملخص باللغة العربية
While SDNs enable more flexible and adaptive network operations, (logically) centralized reconfigurations introduce overheads and delays, which can limit network reactivity. This paper initiates the study of a more distributed approach, in which the consistent network updates are implemented by the switches and routers directly in the data plane. In particular, our approach leverages concepts from local proof labeling systems, which allows the data plane elements to locally check network properties, and we show that this is sufficient to obtain global network guarantees. We demonstrate our approach considering three fundamental use cases, and analyze its benefits in terms of performance and fault-tolerance.
In this work we study the cost of local and global proofs on distributed verification. In this setting the nodes of a distributed system are provided with a nondeterministic proof for the correctness of the state of the system, and the nodes need to
Ubiquitous sensing devices frequently disseminate their data between them. The use of a distributed event-based system that decouples publishers of subscribers arises as an ideal candidate to implement the dissemination process. In this paper, we pre
SDN controllers must be periodically modified to add features, improve performance, and fix bugs, but current techniques for implementing dynamic updates are inadequate. Simply halting old controllers and bringing up new ones can cause state to be lo
We study the maximum cardinality matching problem in a standard distributed setting, where the nodes $V$ of a given $n$-node network graph $G=(V,E)$ communicate over the edges $E$ in synchronous rounds. More specifically, we consider the distributed
Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to p