ترغب بنشر مسار تعليمي؟ اضغط هنا

A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidation

124   0   0.0 ( 0 )
 نشر من قبل Sebastian Siol
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sebastian Siol




اسأل ChatGPT حول البحث

TiO$_2$ and WO$_3$ are two of the most important earth-abundant electronic materials with applications in countless industries. Recently alloys of WO$_3$ and TiO$_2$ have been investigated leading to improvements of key performance indicators for a variety of applications ranging from photo-electrochemical water splitting to electrochromic smart windows. These positive reports and the complexity of the ternary W-Ti-O phase diagram motivate a comprehensive experimental screening of this phase space. Using combinatorial thermal oxidation of solid solution W$_{1-x}$Ti$_{x}$ precursors combined with bulk and surface analysis mapping we investigate the oxide phase formation and surface passivation of tungsten titanium oxide in the entire compositional range from pure WO$_3$ to TiO$_2$. The system shows a remarkable structural transition from monoclinic over cubic to tetragonal symmetry with increasing Ti concentration. In addition, a strong Ti surface enrichment is observed for precursor Ti-concentrations in excess of 55 at.%, resulting in the formation of a protective rutile-structured TiO$_2$ surface layer. Despite the structural transitions, the optical properties of the oxide alloys remain largely unaltered demonstrating an independent control of multiple functional properties in W$_{1-x}$Ti$_{x}$O$_{n}$. The results from this study provide valuable guidelines for future development of W$_{1-x}$Ti$_{x}$O$_{n}$ for electronic and energy applications, but also novel engineering approaches for surface functionalization and additive manufacturing of Ti-based alloys.

قيم البحث

اقرأ أيضاً

To investigate excess-hydrolysis of titanium alkoxides, TiO2 powders were fabricated from titanium-tetra-isopropoxide using 6:1 and 100:1 H2O:Ti (r) ratios. Powders were dried and fired at a range of temperatures ( up to 800 C). Hydroxylation and org anic content in powders were characterised using ATR-FTIR, laser Raman microspectroscopy, and elemental microanalysis; surface area and pore size distribution were evaluated using N2 gas adsorption; phase composition was analysed using XRD and laser Raman microspectroscopy; and crystallite size was evaluated by XRD, TEM and SEM. Results showed near-complete hydrolysis in a predominantly aqueous medium (r = 100), resulting in precipitated crystalline powders exhibiting brookite and anatase, which begin to transform to rutile below 500 C. Powders precipitated in a predominantly organic medium (r = 6) underwent partial hydrolysis, were highly porous and exhibited an amorphous structure, with crystallisation of anatase occurring at 300 C and transformation to rutile beginning at 500 to 600C.
We observe large-scale surface terraces in tungsten oxidised at high temperature and in high vacuum. Their formation is highly dependent on crystal orientation, with only {111} grains showing prominent terraces. Terrace facets are aligned with {100} crystallographic planes, leading to an increase in total surface energy, making a diffusion-driven formation mechanism unlikely. Instead we hypothesize that preferential oxidation of {100} crystal planes controls terrace formation. Grain height profiles after oxidation and the morphology of samples heat treated with limited oxygen supply are consistent with this hypothesis. Our observations have important implications for the use of tungsten in extreme environments.
In this work, we investigate the correlation between morphology, composition, and the mechanical properties of metallic amorphous tungsten-oxygen and amorphous tungsten-oxide films deposited by Pulsed Laser Deposition. This correlation is investigate d by the combined use of Brillouin Spectroscopy and the substrate curvature method. The stiffness of the films is strongly affected by both the oxygen content and the mass density. The elastic moduli show a decreasing trend as the mass density decreases and the oxygen-tungsten ratio increases. A plateaux region is detected in correspondence of the transition between metallic and oxide films. The compressive residual stresses, moderate stiffness and high local ductility that characterize compact amorphous tungsten-oxide films make them promising for applications involving thermal or mechanical loads. The coefficient of thermal expansion is quite high (i.e. 8.9 $cdot$ 10$^{-6}$ K$^{-1}$), being strictly correlated to the amorphous structure and stoichiometry of the films. Under thermal treatments they show a quite low relaxation temperature (i.e. 450 K). They crystallize into the $gamma$ monoclinic phase of WO$_3$ starting from 670 K, inducing an increase by about 70% of material stiffness.
The structure of thin terminated Bi(1 1 1) films of approximately 1 nm thickness is investigated from first principles. Our density functional theory calculations show that covalent bonds to the surface can change the orientation of the films complet ely. For thicker films, the effect is limited to the surface only. Based on these observations, we further present a simple model structure for the native oxide and chemically similar oxides, which form a protective capping layer, leaving the orientation of the films unchanged. The advantages of this energetically favorable layered termination are discussed in the context of the films technological exploitation in nanoelectronic devices.
We report the structural and electrical characterization of tungsten oxides formed by illuminating multi-layer tungsten diselenide (WSe2) nanosheets with an intense laser beam in the ambient environment. A noninvasive microwave impedance microscope ( MIM) was used to perform electrical imaging of the samples. The local conductivity ~100 S/m of the oxidized product, measured by the MIM and conventional transport experiments, is much higher than that of the pristine WSe2, suggesting the formation of sub-stoichiometric WO3-x polycrystals with n-type carriers. With further efforts to improve the conductivity of the oxides, the laser-assisted oxidation process may be useful for patterning conductive features on WSe2 or forming electrical contacts to various transition metal dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا