ﻻ يوجد ملخص باللغة العربية
Weakly Supervised Object Localization (WSOL) techniques learn the object location only using image-level labels, without location annotations. A common limitation for these techniques is that they cover only the most discriminative part of the object, not the entire object. To address this problem, we propose an Attention-based Dropout Layer (ADL), which utilizes the self-attention mechanism to process the feature maps of the model. The proposed method is composed of two key components: 1) hiding the most discriminative part from the model for capturing the integral extent of object, and 2) highlighting the informative region for improving the recognition power of the model. Based on extensive experiments, we demonstrate that the proposed method is effective to improve the accuracy of WSOL, achieving a new state-of-the-art localization accuracy in CUB-200-2011 dataset. We also show that the proposed method is much more efficient in terms of both parameter and computation overheads than existing techniques.
Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we
The research on recognizing the most discriminative regions provides referential information for weakly supervised object localization with only image-level annotations. However, the most discriminative regions usually conceal the other parts of the
Weakly supervised object localization (WSOL) is a challenging problem when given image category labels but requires to learn object localization models. Optimizing a convolutional neural network (CNN) for classification tends to activate local discri
Weakly supervised semantic segmentation and localiza- tion have a problem of focusing only on the most important parts of an image since they use only image-level annota- tions. In this paper, we solve this problem fundamentally via two-phase learnin
Weakly supervised object localization (WSOL) aims to localize objects by only utilizing image-level labels. Class activation maps (CAMs) are the commonly used features to achieve WSOL. However, previous CAM-based methods did not take full advantage o