ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisionally inhomogeneous Bose-Einstein condensates with a linear interaction gradient

126   0   0.0 ( 0 )
 نشر من قبل Elmar Haller
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of a collisionally inhomogeneous matter wave in a spatial gradient of the interaction strength. Starting with a Bose-Einstein condensate with weak repulsive interactions in quasi-one-dimensional geometry, we monitor the evolution of a matter wave that simultaneously extends into spatial regions with attractive and repulsive interactions. We observe the formation and the decay of soliton-like density peaks, counter-propagating self-interfering wave packets, and the creation of cascades of solitons. The matter-wave dynamics is well reproduced in numerical simulations based on the nonpolynomial Schroedinger equation with three-body loss, allowing us to better understand the underlying behaviour based on a wavelet transformation. Our analysis provides new understanding of collapse processes for solitons, and opens interesting connections to other nonlinear instabilities.



قيم البحث

اقرأ أيضاً

We study stability of solitary vortices in the two-dimensional trapped Bose-Einstein condensate (BEC) with a spatially localized region of self-attraction. Solving the respective Bogoliubov-de Gennes equations and running direct simulations of the un derlying Gross-Pitaevskii equation reveals that vortices with topological charge up to S = 6 (at least) are stable above a critical value of the chemical potential (i.e., below a critical number of atoms, which sharply increases with S). The largest nonlinearity-localization radius admitting the stabilization of the higher-order vortices is estimated analytically and accurately identified in a numerical form. To the best of our knowledge, this is the first example of a setting which gives rise to stable higher-order vortices, S > 1, in a trapped self-attractive BEC. The same setting may be realized in nonlinear optics too.
We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is confined in an optical lattice potential formed by a traveling l aser beam reflected off one cavity mirror. We derive the cavity-mediated effective atom-atom interaction potential, and find that it is non-uniform, site-dependent, and does not decay as the interatomic distance increases. We show that the presence of this effective interaction breaks the Z$_2$ symmetry of the system and gives rise to new quantum phases and phase transitions. When the long-range interaction dominates, the condensate breaks the translation symmetry and turns into a novel self-organized lattice-like state with increasing particle densities for sites farther away from the cavity. We present the phase diagram of the system, and investigate the stabilities of different phases by calculating their respective excitation spectra. The system can serve as a platform to explore various self-organized phenomena induced by the long-range interactions.
We experimentally demonstrate a multi-mode interferometer comprising a Bose-Einstein condensate of $^{39}$K atoms trapped in a harmonic potential, where the interatomic interaction can be cancelled exploiting Feshbach resonances. Kapitza-Dirac diffra ction from an optical lattice coherently splits the BEC in multiple momentum components equally spaced that form different interferometric paths, closed by the trapping harmonic potential. We investigate two different interferometric schemes, where the recombination pulse is applied after a full or half oscillation in the confining potential. We find that the relative amplitudes of the momentum components at the interferometer output are sensitive to external forces, through the induced displacement of the harmonic potential with respect to the optical lattice. We show how to calibrate the interferometer, fully characterize its output and discuss perspective improvements.
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, the refore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
237 - Lei Tan , Bin Wang , Peter Barker 2012
We investigate the energy structures and the dynamics of a Bose-Einstein condensates (BEC) in a triple-well potential coupled a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several int eresting phenomena arise which are the focuses of this work. For the energy structure, the bistability appears in the energy levels due to this atoms-cavity field nonlinearity, and the same phenomena can be found in the intra-cavity photons number. With an increase of the pump-cavity detunings, the higher and lower energy levels show a loop structure due to this cavity-mediated effects. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا