ﻻ يوجد ملخص باللغة العربية
In this work, we present the computational realization of holographic metasurfaces to generation of the non-diffracting waves. These holographic metasurfaces (HMS) are simulated by modeling a periodic lattice of metallic patches on dielectric substrates with sub-wavelength dimensions, where each one of those unit cells alter the phase of the incoming wave. We use the surface impedance (Z) to control the phase of the electromagnetic wave through the metasurface in each unit cell. The sub-wavelength dimensions guarantees that the effective medium theory is fulfilled. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of non-diffracting waves are generated and reproduced using such HMS in the microwave regime. The results is according to the theoretically predicted by non-diffracting wave theory. These results are important given the possibilities of applications of these types of electromagnetic waves in several areas of telecommunications and bioengineering.
In this work, we present the computational simulations of holographic metasurfaces to generation of the optical non-diffracting beams. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of optical n
Microwave transport experiments have been performed in a quasi-two-dimensional resonator with randomly distributed scatterers, each mimicking an $r^{-2}$ repulsive potential. Analysis of both stationary wave fields and transient transport shows large
We derive the spectral decomposition of the Lippmann-Schwinger equation for electrodynamics, obtaining the fields as a sum of eigenmodes. The method is applied to cylindrical geometries.
In this paper we find a realization for the DB-boundary conditions, which imposes vanishing normal derivatives of the normal components of the D and B fields. The implementation of the DB boundary, requiring vanishing normal components of D and B, is
A holographic realization for ferromagnetic systems has been constructed. Owing to the holographic dictionary proposed on the basis of this realization, we obtained relevant thermodynamic quantities such as magnetization, magnetic susceptibility, and