ﻻ يوجد ملخص باللغة العربية
Accurate prediction of the radio emission from cosmic ray air showers relies on computationally demanding Monte Carlo simulations such as CoREAS. We aim to expedite this process via a semi-analytical synthesis model while maintaining high accuracy by using simulated radio pulses as templates. We present our key concept for template processing focusing on the development of the particle cascade and its empirical effect on the locally produced radio signal. In this context the universality of the radio emission from small sections of an air shower also becomes important where most previous studies focus on integral quantities observable at far distances.
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been
Relativistic, charged particles present in extensive air showers lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong el
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of th
LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available
The radio detection method for cosmic rays relies on coherent emission from electrons and positrons which is beamed in a narrow cone along the shower axis. Currently the only mod- els to reproduce this emission with sufficient accuracy are Monte Carl