ﻻ يوجد ملخص باللغة العربية
The extensions of the Standard Model based on the $SU(3)_ctimes SU(3)_Ltimes U(1)_X$ gauge group (331-models) have been advocated to explain the number of fermion families in nature. It has been recently shown that the Froggatt-Nielsen mechanism, a popular way to explain the mass hierarchy of the charged fermions, can be incorporated into the 331-setting in an economical fashion (FN331). In this work we extend the FN331-model to include three right-handed neutrino singlets. We show that the seesaw mechanism is realized in this model. The scale of the seesaw mechanism is near the $SU(3)_Ltimes U(1)_X$-breaking scale. The model we present here simultaneously explains the mass hierarchy of all the fermions, including neutrinos, and the number of families.
We present a doubly parametric extension of the standard Froggatt--Nielsen (FN) mechanism. As is well known, mass matrices of the up- and down-type quark sectors and the charged lepton sector in the standard model can be parametrized well by a parame
We study Froggatt-Nielsen (FN) like flavor models with modular symmetry. The FN mechanism is a convincing solution to the flavor puzzle in quark sector. The FN mechanism requires an extra $U(1)$ gauge symmetry which is broken at high energy. Alternat
The models with the gauge group $SU(3)_ctimes SU(3)_L times U(1)_X$ (331-models) have been advocated to explain why there are three fermion generations in Nature. As such they can provide partial understanding of the flavour sector. The hierarchy of
In the model of gauge mediation of SUSY breaking in the presence of tree-level mediation, the Froggatt-Nielsen mechanism provides a different hierarchy of sparticle masses. We study the spectra and show the results to be like those in an effective supersymmetric model.
We discuss the Dirac CP violating phase $delta_{CP}$ in the Froggatt-Nielsen model for a neutrino mass matrix $M_ u$ imposing a condition ${rm det} [M_ u]=0$. This additional condition restricts the CP violating phase $delta_{CP}$ drastically. We fin