ﻻ يوجد ملخص باللغة العربية
We consider the two dimensional quantitative imaging problem of recovering a radiative source inside an absorbing and scattering medium from knowledge of the outgoing radiation measured at the boundary. The medium has an anisotropic scattering property that is neither negligible nor large enough for the diffusion approximation to hold. We present the numerical realization of the authors recently proposed reconstruction method. For scattering kernels of finite Fourier content in the angular variable, the solution is exact. The feasibility of the proposed algorithms is demonstrated in several numerical experiments, including simulated scenarios for parameters meaningful in optical molecular imaging.
We study the efficient approximation of integrals involving Hankel functions of the first kind which arise in wave scattering problems on straight or convex polygonal boundaries. Filon methods have proved to be an effective way to approximate many ty
We propose a numerical method to approximate the scattering amplitudes for the elasticity system with a non-constant matrix potential in dimensions $d=2$ and $3$. This requires to approximate first the scattering field, for some incident waves, which
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value
This article is concerned with the derivation of numerical reconstruction schemes for the inverse moving source problem on determining source profiles in (time-fractional) evolution equations. As a continuation of the theoretical result on the unique
In this paper, we design a truly exact and optimal perfect absorbing layer (PAL) for domain truncation of the two-dimensional Helmholtz equation in an unbounded domain with bounded scatterers. This technique is based on a complex compression coordina