ﻻ يوجد ملخص باللغة العربية
Flow routing over inter-datacenter networks is a well-known problem where the network assigns a path to a newly arriving flow potentially according to the network conditions and the properties of the new flow. An essential system-wide performance metric for a routing algorithm is the flow completion times, which affect the performance of applications running across multiple datacenters. Current static and dynamic routing approaches do not take advantage of flow size information in routing, which is practical in a controlled environment such as inter-datacenter networks that are managed by the datacenter operators. In this paper, we discuss Best Worst-case Routing (BWR), which aims at optimizing the tail completion times of long-running flows over inter-datacenter networks with non-uniform link capacities. Since finding the path with the best worst-case completion time for a new flow is NP-Hard, we investigate two heuristics, BWRH and BWRHF, which use two different upper bounds on the worst-case completion times for routing. We evaluate BWRH and BWRHF against several real WAN topologies and multiple traffic patterns. Although BWRH better models the BWR problem, BWRH and BWRHF show negligible difference across various system-wide performance metrics, while BWRHF being significantly faster. Furthermore, we show that compared to other popular routing heuristics, BWRHF can reduce the mean and tail flow completion times by over $1.5times$ and $2times$, respectively.
Inter-datacenter networks connect dozens of geographically dispersed datacenters and carry traffic flows with highly variable sizes and different classes. Adaptive flow routing can improve efficiency and performance by assigning paths to new flows ac
Long flows contribute huge volumes of traffic over inter-datacenter WAN. The Flow Completion Time (FCT) is a vital network performance metric that affects the running time of distributed applications and the users quality of experience. Flow routing
Several organizations have built multiple datacenters connected via dedicated wide area networks over which large inter-datacenter transfers take place. This includes tremendous volumes of bulk multicast traffic generated as a result of data and cont
Bulk transfers from one to multiple datacenters can have many different completion time objectives ranging from quickly replicating some $k$ copies to minimizing the time by which the last destination receives a full replica. We design an SDN-style w
This paper introduces for the first time a framework to obtain provable worst-case guarantees for neural network performance, using learning for optimal power flow (OPF) problems as a guiding example. Neural networks have the potential to substantial