ترغب بنشر مسار تعليمي؟ اضغط هنا

Damping enhancement in coherent ferrite/insulating-paramagnet bilayers

252   0   0.0 ( 0 )
 نشر من قبل Satoru Emori
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-quality epitaxial ferrites, such as low-damping MgAl-ferrite (MAFO), are promising nanoscale building blocks for all-oxide heterostructures driven by pure spin current. However, the impact of oxide interfaces on spin dynamics in such heterostructures remains an open question. Here, we investigate the spin dynamics and chemical and magnetic depth profiles of 15-nm-thick MAFO coherently interfaced with an isostructural $approx$1-8-nm-thick overlayer of paramagnetic CoCr$_2$O$_4$ (CCO) as an all-oxide model system. Compared to MAFO without an overlayer, effective Gilbert damping in MAFO/CCO is enhanced by a factor of $>$3, irrespective of the CCO overlayer thickness. We attribute this damping enhancement to spin scattering at the $sim$1-nm-thick chemically disordered layer at the MAFO/CCO interface, rather than spin pumping or proximity-induced magnetism. Our results indicate that damping in ferrite-based heterostructures is strongly influenced by interfacial chemical disorder, even if the thickness of the disordered layer is a small fraction of the ferrite thickness.

قيم البحث

اقرأ أيضاً

Transition metal dichalcogenides (TMD) possess novel properties which makes them potential candidates for various spintronic applications. Heterostructures of TMD with magnetic thin film have been extensively considered for spin-orbital torque, enhan cement of perpendicular magnetic anisotropy etc. However, the effect of TMD on magnetic anisotropy in heterostructures of in-plane magnetization has not been studied so far. Further the effect of the TMD on the domain structure and magnetization reversal of the ferromagnetic system is another important aspect to be understood. In this context we study the effect of MoS2, a well-studied TMD material, on magnetic properties of CoFeB in MoS2/CoFeB heterostructures. The reference CoFeB film possess a weak in-plane anisotropy. However, when the CoFeB is deposited on MoS2 the in-plane anisotropy is enhanced as observed from magneto optic Kerr effect (MOKE) microscopy as well as ferromagnetic resonance (FMR). Magnetic domain structure and magnetization reversal have also been significantly modified for the MoS2/CoFeB bilayer as compared to the reference CoFeB layer. Frequency and angle dependent FMR measurement show that the magnetic anisotropy of CoFeB increases with increase in thickness of MoS2 in the MoS2/CoFeB heterostructures.
Organic semiconductor/ferromagnetic bilayer thin films can exhibit novel properties due to the formation of the spinterface at the interface. Buckminsterfullerene (C60) has been shown to exhibit ferromagnetism at the interface when it is placed next to a ferromagnet (FM) such as Fe or Co. Formation of spinterface occurs due to the orbital hybridization and spin polarized charge transfer at the interface. In this work, we have demonstrated that one can tune the magnetic anisotropy of the low Gilbert damping alloy CoFeB by introducing a C60 layer. We have shown that anisotropy is enhanced by increasing the thickness of C60 which might be a result of the formation of spinterface. However, the magnetic domain structure remains same in the bilayer samples as compared to the reference CoFeB film.
We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe$_3$O$_4$(111)/Yttria-stabilized Zirconia (YSZ) nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of t he defect-free Fe$_3$O$_4$ film is found to be strikingly larger than that of the as-grown Fe$_3$O$_4$ film with structural defects. We demonstrate that the population of the first-order perpendicular standing spin wave (PSSW) mode, which is exclusively observed in the defect-free film under sufficiently high external magnetic fields, leads to the enhancement of the magnetic damping of the uniform precession (Kittel) mode. We propose a physical picture in which the PSSW mode acts as an additional channel for the extra energy dissipation of the Kittel mode. The energy transfer from Kittel mode to PSSW mode increases as in-plane magnetization precession becomes more uniform, resulting in the unique intrinsic magnetic damping enhancement in the defect-free Fe$_3$O$_4$ film.
Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both damping-like and field-like spin-orbit torqu es have been observed in the forward process of current-driven spin torque and damping-like inverse spin-orbit torque has been well-studied via spin pumping into heavy metal layers. Here we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the AC charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly-extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all AC charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni$_{80}$Fe$_{20}$/Pt bilayers exhibit both damping-like and field-like inverse spin-orbit torques. While the magnitudes of both the damping-like and field-like inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the damping-like magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the damping-like spin-to-charge conversion.
The process of magnetic relaxation was studied in bismuth ferrite BiFeO3 multiferroic micro-cubes obtained by means of microwave assisted Pechini process. Two different mechanisms of relaxation were found. The first one is a rapid magnetic relaxation driven by the domain reorientations and/or pinning and motion of domain walls. This mechanism is also responsible for the irreversible properties at low temperatures. The power-law decay of the magnetic moment confirms that this relaxation takes place in the system of weakly interacting ferromagnetic or superferromagnetic domains. The second mechanism is a longterm weak magnetic relaxation due to spin glass-phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا