ﻻ يوجد ملخص باللغة العربية
Let us call a (para)topological group emph{strongly submetrizable} if it admits a coarser separable metrizable (para)topological group topology. We present a characterization of simply $sm$-factorizable (para)topo-logical groups by means of continuous real-valued functions. We show that a (para)topo-logical group $G$ is a simply $sm$-factorizable if and only if for each continuous function $fcolon Gto mathbb{R}$, one can find a continuous homomorphism $varphi$ of $G$ onto a strongly submetrizable (para)topological group $H$ and a continuous function $gcolon Hto mathbb{R}$ such that $f=gcircvarphi$. This characterization is applied for the study of completions of simply $sm$-factorizable topological groups. We prove that the equalities $mu{G}=varrho_omega{G}=upsilon{G}$ hold for each Hausdorff simply $sm$-factorizable topological group $G$. This result gives a positive answer to a question posed by Arhangelskii and Tkachenko in 2018. Also, we consider realcompactifications of simply $sm$-factorizable paratopological groups. It is proved, among other results, that the realcompactification, $upsilon{G}$, and the Dieudonne completion, $mu{G}$, of a regular simply $sm$-factorizable paratopological group $G$ coincide and that $upsilon{G}$ admits the natural structure of paratopological group containing $G$ as a dense subgroup and, furthermore, $upsilon{G}$ is also simply $sm$-factorizable. Some results in [emph{Completions of paratopological groups, Monatsh. Math. textbf{183} (2017), 699--721}] are improved or generalized.
We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its the Stone-v{C}ech compactification $beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $
It is proved that any countable topological group in which the filter of neighborhoods of the identity element is not rapid contains a discrete set with precisely one nonisolated point. This gives a negative answer to Protasovs question on the existe
Known and new results on free Boolean topological groups are collected. An account of properties which these groups share with free or free Abelian topological groups and properties specific of free Boolean groups is given. Special emphasis is placed
A Hausdorff topological group is called minimal if it does not admit a strictly coarser Hausdorff group topology. This paper mostly deals with the topological group $H_+(X)$ of order-preserving homeomorphisms of a compact linearly ordered connected s
We discuss various modifications of separability, precompactnmess and narrowness in topological groups and test those modifications in the permutation groups $S(X)$ and $S_{<omega}(X)$.