ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-dependent Spin Polarization of Cooper Pairs in Magnetic Josephson Junctions

259   0   0.0 ( 0 )
 نشر من قبل Samme Manuel Dahir
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductor-Ferromagnet hybrid structures (SF) have attracted much interest in the last decades, due to a variety of interesting phenomena predicted and observed in these structures. One of them is the so-called inverse proximity effect. It is described by a spin polarization of Cooper pairs, which occurs not only in the ferromagnet (F), but also in the superconductor (S) yielding a finite magnetic moment $M_{text{S}}$ inside the superconductor. This effect has been predicted and experimentally studied. However, interpretation of the experimental data is mostly ambiguous. Here, we study theoretically the impact of the spin polarized Cooper pairs on the Josephson effect in an SFS junction. We show that the induced magnetic moment $M_{text{S}}$ does depend on the phase difference $varphi$ and therefore, will oscillate in time with the Josephson frequency $2eV/hbar$ if the current exceeds a critical value. Most importantly, the spin polarization in the superconductor causes a significant change in the Fraunhofer pattern, which can be easily accessed experimentally.


قيم البحث

اقرأ أيضاً

We present an exhaustive study of the coherent heat transport through superconductor-ferromagnet(S-F) Josephson junctions including a spin-filter (I$_{sf}$) tunneling barrier. By using the quasiclassical Keldysh Greens function technique we derive a general expression for the heat current flowing through a S/F/I$_{sf}$/F/S junction and analyze the dependence of the thermal conductance on the spin-filter efficiency, the phase difference between the superconductors and the magnetization direction of the ferromagnetic layers. In the case of non-collinear magnetizations we show explicitly the contributions to the heat current stemming from the singlet and triplet components of the superconducting condensate. We also demonstrate that the magnetothermal resistance ratio of a S/F/I$_{sf}$/F/S heat valve can be increased by the spin-filter effect under suitable conditions.
127 - J. P. Pekola 1999
We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurre nt flow through the array. Both corrections decrease exponentially with the number N of junctions in the array, but give a serious limitation of accuracy for any practical array. The supercurrent at resonant gate voltages decreases with N only as sin(v/N)/N, where v is the Josephson phase difference across the array.
488 - S. Hikino , M. Mori , S. Takahashi 2010
Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI a re calculated by combining Maxwell and Landau-Lifshitz-Gilbert equations. In the S/FI/S junction, it is found that the current-voltage (I-V) characteristic shows two resonant peaks. Voltages at the resonant peaks are obtained as a function of the normal modes of EM field, which indicates a composite excitation of the EM field and spin-waves in the S/FI/S junction. We also examine another type of junction, in which a nonmagnetic insulator (I) is located at one of interfaces between S and FI. In such a S/I/FI/S junction, three resonant peaks appear in the I-V curve, since the Josephson-phase couples to the EM field in the I layer.
In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristiv e) character and thus should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to a non-stationary, phase-dependent noise. As a consequence, dynamic and thermal noise necessarily show a phase dependence otherwise absent in nondissipative JJ models. This phase dependence may be realized experimentally as a hysteresis effect if the unavoidable time averaging of the experimental probe is shorter than the period of the Josephson phase.
The study of superconductor-ferromagnet interfaces has generated great interest in the last decades, leading to the observation of spin-aligned triplet supercurrents and 0-pi transitions in Josephson junctions where two superconductors are separated by an itinerant ferromagnet. Recently, spin-filter Josephson junctions with ferromagnetic barriers have shown unique transport properties, when compared to standard metallic ferromagnetic junctions, due to the intrinsically nondissipative nature of the tunneling process. Here we present the first extensive characterization of spin polarized Josephson junctions down to 0.3 K, and the first evidence of an incomplete 0-pi transition in highly spin polarized tunnel ferromagnetic junctions. Experimental data are consistent with a progressive enhancement of the magnetic activity with the increase of the barrier thickness, as neatly captured by the simplest theoretical approach including a nonuniform exchange field. For very long junctions, unconventional magnetic activity of the barrier points to the presence of spin-triplet correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا