ﻻ يوجد ملخص باللغة العربية
Cable subsystems characterized by long, slender, and flexible structural elements are featured in numerous engineering systems. In each of them, interaction between an individual cable and the surrounding fluid is inevitable. Such a Fluid-Structure Interaction (FSI) has received little attention in the literature, possibly due to the inherent complexity associated with fluid and structural semi-discretizations of disparate spatial dimensions. This paper proposes an embedded boundary approach for filling this gap, where the dynamics of the cable are captured by a standard finite element representation $mathcal C$ of its centerline, while its geometry is represented by a discrete surface $Sigma_h$ that is embedded in the fluid mesh. The proposed approach is built on master-slave kinematics between $mathcal C$ and $Sigma_h$, a simple algorithm for computing the motion/deformation of $Sigma_h$ based on the dynamic state of $mathcal C$, and an energy-conserving method for transferring to $mathcal C$ the loads computed on $Sigma_h$. Its effectiveness is demonstrated for two highly nonlinear applications featuring large deformations and/or motions of a cable subsystem and turbulent flows: an aerial refueling model problem, and a challenging supersonic parachute inflation problem. The proposed approach is verified using numerical data, and validated using real flight data.
Dispersion of low-density rigid particles with complex geometries is ubiquitous in both natural and industrial environments. We show that while explicit methods for coupling the incompressible Navier-Stokes equations and Newtons equations of motion a
We develop a fully-coupled, fully-implicit approach for phase-field modeling of solidification in metals and alloys. Predictive simulation of solidification in pure metals and metal alloys remains a significant challenge in the field of materials sci
A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981
Venous valves are bicuspidal valves that ensure that blood in veins only flows back to the heart. To prevent retrograde blood flow, the two intraluminal leaflets meet in the center of the vein and occlude the vessel. In fluid-structure interaction (F
Bayesian calibration is widely used for inverse analysis and uncertainty analysis for complex systems in the presence of both computer models and observation data. In the present work, we focus on large-scale fluid-structure interaction systems chara