ﻻ يوجد ملخص باللغة العربية
Inspired by an article of R. Bryant on holomorphic immersions of unit disks into Lorentzian CR manifolds, we discuss the application of Cartans method to the question of the existence of bi-disk $mathbb{D}^{2}$ in a smooth $9$-dimensional real analytic real hypersurface $M^{9}subsetmathbb{C}^{5}$ with Levi signature $(2,2)$ passing through a fixed point. The result is that the lift to $M^{9}times U(2)$ of the image of the bi-disk in $M^{9}$ must lie in the zero set of two complex-valued functions in $M^{9}times U(2)$. We then provide an example where one of the functions does not identically vanish, thus obstructing holomorphic immersions.
We study the local equivalence problem for real-analytic ($mathcal{C}^omega$) hypersurfaces $M^5 subset mathbb{C}^3$ which, in coordinates $(z_1, z_2, w) in mathbb{C}^3$ with $w = u+i, v$, are rigid: [ u ,=, Fbig(z_1,z_2,overline{z}_1,overline{z}_2bi
Using a bigraded differential complex depending on the CR and pseudohermitian structure, we give a characterization of three-dimensional strongly pseudoconvex pseudo-hermitian CR-manifolds isometrically immersed in Euclidean space $mathbb{R}^n$ in te
This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi manifold in a very natural way as well as various tools
We show that, for a closed orientable n-manifold, with n not congruent to 3 modulo 4, the existence of a CR-regular embedding into complex (n-1)-space ensures the existence of a totally real embedding into complex n-space. This implies that a closed
In this paper, we develop holomorphic Jacobi structures. Holomorphic Jacobi manifolds are in one-to-one correspondence with certain homogeneous holomorphic Poisson manifolds. Furthermore, holomorphic Poisson manifolds can be looked at as special case