ترغب بنشر مسار تعليمي؟ اضغط هنا

A Full Quantum Eigensolver for Quantum Chemistry Simulations

94   0   0.0 ( 0 )
 نشر من قبل ShiJie Wei
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum simulation of quantum chemistry is one of the most compelling applications of quantum computing. It is of particular importance in areas ranging from materials science, biochemistry and condensed matter physics. Here, we propose a full quantum eigensolver (FQE) algorithm to calculate the molecular ground energies and electronic structures using quantum gradient descent. Compared to existing classical-quantum hybrid methods such as variational quantum eigensolver (VQE), our method removes the classical optimizer and performs all the calculations on a quantum computer with faster convergence. The gradient descent iteration depth has a favorable complexity that is logarithmically dependent on the system size and inverse of the precision. Moreover, the FQE can be further simplified by exploiting perturbation theory for the calculations of intermediate matrix elements, and obtain results with a precision that satisfies the requirement of chemistry application. The full quantum eigensolver can be implemented on a near-term quantum computer. With the rapid development of quantum computing hardware, FQE provides an efficient and powerful tool to solve quantum chemistry problems.



قيم البحث

اقرأ أيضاً

Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape spe cified by a quantum Hamiltonian, which makes it appealing for the needs of quantum chemistry. Experimental realizations have been reported in recent years and theoretical estimates of its efficiency are a subject of intense effort. Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions with competing nearest- and next-nearest-neighbor interactions. We find that recovering the VQE solution allows one to obtain the correlation function of the ground state consistent with the exact result. We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits. Our results are consistent with the current knowledge about the barren plateaus in quantum optimization.
Solving eigenvalue problems is crucially important for both classical and quantum applications. Many well-known numerical eigensolvers have been developed, including the QR and the power methods for classical computers, as well as the quantum phase e stimation(QPE) method and the variational quantum eigensolver for quantum computers. In this work, we present an alternative type of quantum method that uses fixed-point quantum search to solve Type II eigenvalue problems. It serves as an important complement to the QPE method, which is a Type I eigensolver. We find that the effectiveness of our method depends crucially on the appropriate choice of the initial state to guarantee a sufficiently large overlap with the unknown target eigenstate. We also show that the quantum oracle of our query-based method can be efficiently constructed for efficiently-simulated Hamiltonians, which is crucial for analyzing the total gate complexity. In addition, compared with the QPE method, our query-based method achieves a quadratic speedup in solving Type II problems.
Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the fermionic problem in a bosonic system of qubits. By exploiting the block diagonality of a fermionic Hamiltonian, we show that the number of required qubits can be reduced by a factor of two or more. There is no need to go into the basis of the Hilbert space for this reduction because all operations can be performed in the operator space. The scheme is conceived as a pre-computational step that would be performed on a classical computer prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi-Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer.
Recent practical approaches for the use of current generation noisy quantum devices in the simulation of quantum many-body problems have been dominated by the use of a variational quantum eigensolver (VQE). These coupled quantum-classical algorithms leverage the ability to perform many repeated measurements to avoid the currently prohibitive gate depths often required for exact quantum algorithms, with the restriction of a parameterized circuit to describe the states of interest. In this work, we show how the calculation of zero-temperature dynamic correlation functions defining the linear response characteristics of quantum systems can also be recast into a modified VQE algorithm, which can be incorporated into the current variational quantum infrastructure. This allows for these important physical expectation values describing the dynamics of the system to be directly converged on the frequency axis, and they approach exactness over all frequencies as the flexibility of the parameterization increases. The frequency resolution hence does not explicitly scale with gate depth, which is approximately twice as deep as a ground state VQE. We apply the method to compute the single-particle Greens function of ab initio dihydrogen and lithium hydride molecules, and demonstrate the use of a practical active space embedding approach to extend to larger systems. While currently limited by the fidelity of two-qubit gates, whose number is increased compared to the ground state algorithm on current devices, we believe the approach shows potential for the extraction of frequency dynamics of correlated systems on near-term quantum processors.
Variational algorithms for strongly correlated chemical and materials systems are one of the most promising applications of near-term quantum computers. We present an extension to the variational quantum eigensolver that approximates the ground state of a system by solving a generalized eigenvalue problem in a subspace spanned by a collection of parametrized quantum states. This allows for the systematic improvement of a logical wavefunction ansatz without a significant increase in circuit complexity. To minimize the circuit complexity of this approach, we propose a strategy for efficiently measuring the Hamiltonian and overlap matrix elements between states parametrized by circuits that commute with the total particle number operator. We also propose a classical Monte Carlo scheme to estimate the uncertainty in the ground state energy caused by a finite number of measurements of the matrix elements. We explain how this Monte Carlo procedure can be extended to adaptively schedule the required measurements, reducing the number of circuit executions necessary for a given accuracy. We apply these ideas to two model strongly correlated systems, a square configuration of H$_4$ and the $pi$-system of Hexatriene (C$_6$H$_8$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا