ﻻ يوجد ملخص باللغة العربية
We propose a factor state-space approach with stochastic volatility to model and forecast the term structure of future contracts on commodities. Our approach builds upon the dynamic 3-factor Nelson-Siegel model and its 4-factor Svensson extension and assumes for the latent level, slope and curvature factors a Gaussian vector autoregression with a multivariate Wishart stochastic volatility process. Exploiting the conjugacy of the Wishart and the Gaussian distribution, we develop a computationally fast and easy to implement MCMC algorithm for the Bayesian posterior analysis. An empirical application to daily prices for contracts on crude oil with stipulated delivery dates ranging from one to 24 months ahead show that the estimated 4-factor Svensson model with two curvature factors provides a good parsimonious representation of the serial correlation in the individual prices and their volatility. It also shows that this model has a good out-of-sample forecast performance.
In this chapter, we consider volatility swap, variance swap and VIX future pricing under different stochastic volatility models and jump diffusion models which are commonly used in financial market. We use convexity correction approximation technique
In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin
Stochastic differential equations (SDEs) are established tools to model physical phenomena whose dynamics are affected by random noise. By estimating parameters of an SDE intrinsic randomness of a system around its drift can be identified and separat
This paper studies a robust portfolio optimization problem under the multi-factor volatility model introduced by Christoffersen et al. (2009). The optimal strategy is derived analytically under the worst-case scenario with or without derivative tradi