ﻻ يوجد ملخص باللغة العربية
The goal of Project GAUSS is to return samples from the dwarf planet Ceres. Ceres is the most accessible ocean world candidate and the largest reservoir of water in the inner solar system. It shows active cryovolcanism and hydrothermal activities in recent history that resulted in minerals not found in any other planets to date except for Earths upper crust. The possible occurrence of recent subsurface ocean on Ceres and the complex geochemistry suggest possible past habitability and even the potential for ongoing habitability. Aiming to answer a broad spectrum of questions about the origin and evolution of Ceres and its potential habitability, GAUSS will return samples from this possible ocean world for the first time. The project will address the following top-level scientific questions: 1) What is the origin of Ceres and the origin and transfer of water and other volatiles in the inner solar system? 2) What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of icy dwarf planets? 3) What are the astrobiological implications of Ceres? Was it habitable in the past and is it still today? 4) What are the mineralogical connections between Ceres and our current collections of primitive meteorites? GAUSS will first perform a high-resolution global remote sensing investigation, characterizing the geophysical and geochemical properties of Ceres. Candidate sampling sites will then be identified, and observation campaigns will be run for an in-depth assessment of the candidate sites. Once the sampling site is selected, a lander will be deployed on the surface to collect samples and return them to Earth in cryogenic conditions that preserves the volatile and organic composition as well as the original physical status as much as possible.
Comets likely formed in the outer regions of the protosolar nebula where they incorporated and preserved primitive presolar materials, volatiles resident in the outer disk, and more refractory materials from throughout the disk. The return of a sampl
We advocate for the realization of volatile sample return from various destinations including: small bodies, the Moon, Mars, ocean worlds/satellites, and plumes. As part of recent mission studies (e.g., Comet Astrobiology Exploration SAmple Return (C
Comets hold answers to mysteries of the Solar System by recording presolar history, the initial states of planet formation and prebiotic organics and volatiles to the early Earth. Analysis of returned samples from a comet nucleus will provide unparal
Uranus and Neptune are the archetypes of ice giants, a class of planets that may be among the most common in the Galaxy. They hold the keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres inside and outside t
The solar gravitational lens (SGL) provides a factor of $10^{11}$ amplification for viewing distant point sources beyond our solar system. As such, it may be used for resolved imaging of extended sources, such as exoplanets, not possible otherwise. T