ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field induced quantum phases in a tensor network study of Kitaev magnets

65   0   0.0 ( 0 )
 نشر من قبل Hyun-Yong Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent discovery of the half quantized thermal Hall conductivity in $alpha$-RuCl$_3$, a candidate material for the Kitaev spin liquid, suggests the presence of a highly entangled quantum state in external magnetic fields. This field induced phase appears between the low field zig-zag magnetic order and the high field polarized state. Motivated by this experiment, we study possible field induced quantum phases in theoretical models of the Kitaev magnets, using the two dimensional tensor network approach or infinite tensor product states. We find various quantum ground states in addition to the chiral Kitaev spin liquid occupying a small area in the phase diagram. They form a band of emergent quantum phases in an intermediate window of external magnetic fields, somewhat reminiscent of the experiment. We discuss the implications of these results in view of the experiment and previous theoretical studies.


قيم البحث

اقرأ أيضاً

Leveraging coherent light-matter interaction in solids is a promising new direction towards control and functionalization of quantum materials, to potentially realize regimes inaccessible in equilibrium and stabilize new or useful states of matter. W e show how driving the strongly spin-orbit coupled proximal Kitaev magnet $alpha$-RuCl$_3$ with circularly-polarized light can give rise to a novel ligand-mediated magneto-electric effect that both photo-induces a large dynamical effective magnetic field and dramatically alters the interplay of competing isotropic and anisotropic exchange interactions. We propose that tailored light pulses can nudge the material towards the elusive Kitaev quantum spin liquid as well as probe competing magnetic instabilities far from equilibrium, and predict that the transient competition of magnetic exchange processes can be readily observed via pump-probe spectroscopy.
There has been a great interest in magnetic field induced quantum spin liquids in Kitaev magnets after the discovery of neutron scattering continuum and half quantized thermal Hall conductivity in the material $alpha$-RuCl$_3$. In this work, we provi de a semiclassical analysis of the relevant theoretical models on large system sizes, and compare the results to previous studies on quantum models with small system sizes. We find a series of competing magnetic orders with fairly large unit cells at intermediate magnetic fields, which are most likely missed by previous approaches. We show that quantum fluctuations are typically strong in these large unit cell orders, while their magnetic excitations may resemble a scattering continuum and give rise to a large thermal Hall conductivity. Our work provides an important basis for a thorough investigation of emergent spin liquids and competing phases in Kitaev magnets.
Analysis of neutron diffraction, dc magnetization, ac magnetic susceptibility, heat capacity, and electrical resistivity for DyRuAsO in an applied magnetic field are presented at temperatures near and below those at which the structural distortion (T _S = 25 K) and subsequent magnetic ordering (T_N = 10.5 K) take place. Powder neutron diffraction is used to determine the antiferromagnetic order of Dy moments of magnitude 7.6(1) mu_B in the absence of a magnetic field, and demonstrate the reorientation of the moments into a ferromagnetic configuration upon application of a magnetic field. Dy magnetism is identified as the driving force for the structural distortion. The magnetic structure of analogous TbRuAsO is also reported. Competition between the two magnetically ordered states in DyRuAsO is found to produce unusual physical properties in applied magnetic fields at low temperature. An additional phase transition near T* = 3 K is observed in heat capacity and other properties in fields greater than about 3 T. Magnetic fields of this magnitude also induce spin-glass-like behavior including thermal and magnetic hysteresis, divergence of zero-field-cooled and field-cooled magnetization, frequency dependent anomalies in ac magnetic susceptibility, and slow relaxation of the magnetization. This is remarkable since DyRuAsO is a stoichiometric material with no disorder detected by neutron diffraction, and suggests analogies with spin-ice compounds and related materials with strong geometric frustration.
Motivated by recent experiments on $alpha$-RuCl$_3$, we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the $K-Gamma$ model, where $K$ and $Gamma$ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group (iDMRG), we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite size cluster computations and show that the results resemble the scattering continuum seen in neutron scattering experiments on $alpha$-RuCl$_3$. We discuss these results in light of recent and future experiments.
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to $0.4$ K in applied magnetic fields up to $9$ T for fields parallel to the $ab$ plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to $mu_0H_capprox 6.9$ T. Above $H_c$, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point (QCP) at $H_c$; this is supported by universal scaling behavior near $H_c$. Remarkably, the data also reveal the existence of a small characteristic energy scale well below $1$~meV above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a $J_1$--$K_1$--$Gamma_1$--$J_3$ honeycomb model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا