ﻻ يوجد ملخص باللغة العربية
In this paper, we compute the higher derivative amplitudes arising from shift symmetric-invariant actions for both the non-linear sigma model and the special galileon symmetries, and provide explicit expressions for their Lagrangians. We find that, beyond leading order, the equivalence between shift symmetries, enhanced single soft limits, and compatibility with the double copy procedure breaks down. In particular, we have shown that the most general even-point amplitudes of a colored-scalar satisfying the Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ) relations are compatible with the non-linear sigma model symmetries. Similarly, their double copy is compatible with the special galileon symmetries. We showed this by fixing the dimensionless coefficients of these effective field theories in such a way that the arising amplitudes are compatible with the double copy procedure. We find that this can be achieved for the even-point amplitudes, but not for the odd ones. These results imply that not all operators invariant under the shift symmetries under consideration are compatible with the double copy.
It is now well understood that Ward identities associated to the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of d
We present a novel double-copy prescription for gauge fields at the Lagrangian level and apply it both to the original double copy and the soft theorem. The Yang-Mills Lagrangian in light-cone gauge is mapped directly to the $mathcal{N}=0$ supergravi
The double copy formalism provides an intriguing connection between gauge theories and gravity. It was first demonstrated in the perturbative context of scattering amplitudes but recently the formalism has been applied to exact classical solutions in
Recently, evidence was provided for the existence of an $a$-function for renormalisable quantum field theories in three dimensions. An explicit expression was given at lowest order for general theories involving scalars and fermions, and shown to be