ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond mean-field corrections to the quasiparticle spectrum of superfluid Fermi gases

71   0   0.0 ( 0 )
 نشر من قبل Senne Van Loon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the fermionic quasiparticle branch of superfluid Fermi gases in the BCS-BEC crossover and calculate the quasiparticle lifetime and energy shift due to its coupling with the collective mode. The only close-to-resonance process that low-energy quasiparticles can undergo at zero temperature is the emission of a bosonic excitation from the phononic branch. Close to the minimum of the branch we find that the quasiparticles remain undamped, allowing us to compute corrections to experimentally relevant quantities such as the energy gap, location of the minimum, effective mass, and Landau critical velocity.



قيم البحث

اقرأ أيضاً

We present a detailed beyond-mean-field analysis of a weakly interacting Bose gas in the crossover from three to low dimensions. We find an analytical solution for the energy and provide a clear qualitative picture of the crossover in the case of a b ox potential with periodic boundary conditions. We show that the leading contribution of the confinement-induced resonance is of beyond-mean-field order and calculate the leading corrections in the three- and low-dimensional limits. We also characterize the crossover for harmonic potentials in a model system with particularly chosen short- and long-range interactions and show the limitations of the local-density approximation. Our analysis is applicable to Bose-Bose mixtures and gives a starting point for developing the beyond-mean-field theory in inhomogeneous systems with long-range interactions such as dipolar particles or Rydberg-dressed atoms.
We study the propagation of dispersive waves in superfluid Fermi gases in the BEC-BCS crossover. Unlike in other superfluid systems, where dispersive waves have already been studied and observed, Fermi gases can exhibit a subsonic dispersion relation for which the dispersive wave pattern appears at the tail of the wave front. We show that this property can be used to distinguish between a subsonic and a supersonic dispersion relation at unitarity.
In this work dark soliton collisions in a one-dimensional superfluid Fermi gas are studied across the BEC-BCS crossover by means of a recently developed finite-temperature effective field theory [S. N. Klimin, J. Tempere, G. Lombardi, J. T. Devreese, Eur. Phys. J. B 88, 122 (2015)] . The evolution of two counter-propagating solitons is simulated numerically based on the theorys nonlinear equation of motion for the pair field. The resulting collisions are observed to introduce a spatial shift into the trajectories of the solitons. The magnitude of this shift is calculated and studied in different conditions of temperature and spin-imbalance. When moving away from the BEC-regime, the collisions are found to become inelastic, emitting the lost energy in the form of small-amplitude density oscillations. This inelasticity is quantified and its behavior analyzed and compared to the results of other works. The dispersion relation of the density oscillations is calculated and is demonstrated to show a good agreement with the spectrum of collective excitations of the superfluid.
We use a finite temperature effective field theory recently developed for superfluid Fermi gases to investigate the properties of dark solitons in these superfluids. Our approach provides an analytic solution for the dip in the order parameter and th e phase profile accross the soliton, which can be compared with results obtained in the framework of the Bogoliubov - de Gennes equations. We present results in the whole range of the BCS-BEC crossover, for arbitrary temperatures, and taking into account Gaussian fluctuations about the saddle point. The obtained analytic solutions yield an exact energy-momentum relation for a dark soliton showing that the soliton in a Fermi gas behaves like a classical particle even at nonzero temperatures. The spatial profile of the pair field and for the parameters of state for the soliton are analytically studied. In the strong-coupling regime and/or for sufficiently high temperatures, the obtained analytic solutions match well the numeric results obtained using the Bogoliubov - de Gennes equations.
Recent experiments with ultracold lanthanide atoms which are characterized by a large magnetic moment have revealed the crucial importance of beyond-mean-field corrections in understanding the dynamics of the gas. We study how the presence of an exte rnal optical lattice modifies the structure of the corrections. We find that deep in the superfluid regime the equation of state is well described by introducing an anisotropic effective mass. However, for a deep lattice we find terms with anomalous density dependence which do not arise in free space. For a one-dimensional lattice, the relative orientation of the dipole axis with respect to the lattice plays a crucial role and the beyond-mean-field corrections can be either enhanced or suppressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا