ﻻ يوجد ملخص باللغة العربية
We investigate the fermionic quasiparticle branch of superfluid Fermi gases in the BCS-BEC crossover and calculate the quasiparticle lifetime and energy shift due to its coupling with the collective mode. The only close-to-resonance process that low-energy quasiparticles can undergo at zero temperature is the emission of a bosonic excitation from the phononic branch. Close to the minimum of the branch we find that the quasiparticles remain undamped, allowing us to compute corrections to experimentally relevant quantities such as the energy gap, location of the minimum, effective mass, and Landau critical velocity.
We present a detailed beyond-mean-field analysis of a weakly interacting Bose gas in the crossover from three to low dimensions. We find an analytical solution for the energy and provide a clear qualitative picture of the crossover in the case of a b
We study the propagation of dispersive waves in superfluid Fermi gases in the BEC-BCS crossover. Unlike in other superfluid systems, where dispersive waves have already been studied and observed, Fermi gases can exhibit a subsonic dispersion relation
In this work dark soliton collisions in a one-dimensional superfluid Fermi gas are studied across the BEC-BCS crossover by means of a recently developed finite-temperature effective field theory [S. N. Klimin, J. Tempere, G. Lombardi, J. T. Devreese,
We use a finite temperature effective field theory recently developed for superfluid Fermi gases to investigate the properties of dark solitons in these superfluids. Our approach provides an analytic solution for the dip in the order parameter and th
Recent experiments with ultracold lanthanide atoms which are characterized by a large magnetic moment have revealed the crucial importance of beyond-mean-field corrections in understanding the dynamics of the gas. We study how the presence of an exte