ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Reversed Gamma-Ray Burst Light Curve Characteristics as Transitions between Subluminal and Superluminal Motion

55   0   0.0 ( 0 )
 نشر من قبل Jon Hakkila
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jon Hakkila




اسأل ChatGPT حول البحث

We introduce a simple model to explain the time-reversed and stretched residuals in gamma-ray burst (GRB) pulse light curves. In this model an impactor wave in an expanding GRB jet accelerates from subluminal to superluminal velocities, or decelerates from superluminal to subluminal velocities. The impactor wave interacts with the surrounding medium to produce Cherenkov and/or other collisional radiation when traveling faster than the speed of light in this medium, and other mechanisms (such as thermalized Compton or synchrotron shock radiation) when traveling slower than the speed of light. These transitions create both a time-forward and a time-reversed set of light curve features through the process of Relativistic Image Doubling (RID). The model can account for a variety of unexplained yet observed GRB pulse behaviors including the amount of stretching observed in time-reversed GRB pulse residuals and the relationship between stretching factor and pulse asymmetry. The model is applicable to all GRB classes since similar pulse behaviors are observed in long/intermediate GRBs, short GRBs, and x-ray flares. The free model parameters are the impactors Lorentz factor when moving subluminally, its Lorentz factor when moving superluminally, and the speed of light in the impacted medium.

قيم البحث

اقرأ أيضاً

In our previous work in Xiao et al. (2019), we suggested that 6 superluminal sources could be gamma-ray candidates, and in fact 5 of them have been confirmed in the fourth Fermi-LAT source catalogue (4FGL). In this work, based on the 4FGL, we report a sample of 229 Fermi detected superluminal sources (FDSs) including 40 new FDSs and 62 non-Fermi detected superluminal sources (non-FDSs). Thus, we believe that all superluminal sources should have $gamma$-ray emissions, and superluminal motion could also be a clue to detect $gamma$-ray emission from active galactic nuclei (AGN). We present a new approach of Doppler factor estimate through the study of the $gamma$-ray luminosity ($L_{rm gamma}$) and of the viewing angle ($phi$).
We present the results of radio observations from the eMERLIN telescope combined with X-ray data from Swift for the short-duration Gamma-ray burst (GRB) 200826A, located at a redshift of 0.71. The radio light curve shows evidence of a sharp rise, a p eak around 4-5 days post-burst, followed by a relatively steep decline. We provide two possible interpretations based on the time at which the light curve reached its peak. (1) If the light curve peaks earlier, the peak is produced by the synchrotron self-absorption frequency moving through the radio band, resulting from the forward shock propagating into a wind medium and (2) if the light curve peaks later, the turn over in the light curve is caused by a jet break. In the former case, we find a minimum equipartition energy of ~3x10^47 erg and bulk Lorentz factor of ~5, while in the latter case we estimate the jet opening angle of ~9-16 degrees. Due to the lack of data, it is impossible to determine which is the correct interpretation, however, due to its relative simplicity and consistency with other multi-wavelength observations which hint at the possibility that GRB 200826A is in fact a long GRB, we prefer scenario one over scenario two.
We examine the effects of time dilation on the temporal profiles of gamma-ray burst (GRB) pulses. By using prescriptions for the shape and evolution of prompt gamma-ray spectra, we can generate a simulated population of single pulsed GRBs at a variet y of redshifts and observe how their light curves would appear to a gamma-ray detector here on Earth. We find that the observer frame duration of individual pulses does not increase as a function of redshift as one would expect from the cosmological expansion of a Friedman-Lemaitre-Robertson-Walker Universe. In fact, the duration of individual pulses is seen to decrease as their signal-to-noise decreases with increasing redshift, as only the brightest portion of a high redshift GRBs light curve is accessible to the detector. The results of our simulation are consistent with the fact that a systematic broadening of GRB durations as a function of redshift has not materialized in either the Swift or Fermi detected GRBs with known redshift. We show that this fundamental duration bias implies that the measured durations and associated Eiso estimates for GRBs detected near an instruments detection threshold should be considered lower limits to their true values. We conclude by predicting that the average peak-to-peak time for a large number of multi-pulsed GRBs as a function of redshift may eventually provide the evidence for time dilation that has so far eluded detection.
86 - Z. Y. Peng , Y. Yin , X. W. Bi 2010
In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band m odel with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least $sim$4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy ($E_{p}$) in the $ u f_{ u}$ spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.
Long duration gamma-ray bursts (GRBs) are among the least understood astrophysical transients powering the high-energy universe. To date, various mechanisms have been proposed to explain the observed electromagnetic GRB emission. In this work, we sho w that, although different jet models may be equally successful in fitting the observed electromagnetic spectral energy distributions, the neutrino production strongly depends on the adopted emission and dissipation model. To this purpose, we compute the neutrino production for a benchmark high-luminosity GRB in the internal shock model, including a dissipative photosphere as well as three emission components, in the jet model invoking internal-collision-induced magnetic reconnection and turbulence (ICMART), in the case of a magnetic jet with gradual dissipation, and in a jet with dominant proton synchrotron radiation. We find that the expected neutrino fluence can vary up to three orders of magnitude in amplitude and peak at energies ranging from $10^4$ to $10^8$ GeV. For our benchmark input parameters, none of the explored GRB models is excluded by the targeted searches carried out by the IceCube and ANTARES Collaborations. However, our work highlights the potential of high-energy neutrinos of pinpointing the underlying GRB emission mechanism and the importance of relying on different jet models for unbiased stacking searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا