ﻻ يوجد ملخص باللغة العربية
The precise determination of the position of point-like emitters and scatterers using far-field optical imaging techniques is of utmost importance for a wide range of applications in medicine, biology, astronomy, and physics. Although the optical wavelength sets a fundamental limit to the image resolution of unknown objects, the position of an individual emitter can in principle be estimated from the image with arbitrary precision. This is used, e.g., in stars position determination and in optical super-resolution microscopy. Furthermore, precise position determination is an experimental prerequisite for the manipulation and measurement of individual quantum systems, such as atoms, ions, and solid state-based quantum emitters. Here we demonstrate that spin-orbit coupling of light in the emission of elliptically polarized emitters can lead to systematic, wavelength-scale errors in the estimate of the emitters position. Imaging a single trapped atom as well as a single sub-wavelength-diameter gold nanoparticle, we demonstrate a shift between the emitters measured and actual positions which is comparable to the optical wavelength. Remarkably, for certain settings, the expected shift can become arbitrarily large. Beyond their relevance for optical imaging techniques, our findings apply to the localization of objects using any type of wave that carries orbital angular momentum relative to the emitters position with a component orthogonal to the direction of observation.
Calibrating the strength of the light-matter interaction is an important experimental task in quantum information and quantum state engineering protocols. The strength of the off-resonant light-matter interaction in multi-atom spin oscillators can be
Optical waveguides in the form of glass fibers are the backbone of global telecommunication networks. In such optical fibers, the light is guided over long distances by continuous total internal reflection which occurs at the interface between the fi
Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron unce
We investigate the spatio-temporal evolution of a Gaussian probe pulse propagating through a four-level $N$-type atomic medium. At two-photon resonance of probe-and control fields, weaker probe pulses may propagate through the medium with low absorpt
Photon-based quantum information processing promises new technologies including optical quantum computing, quantum cryptography, and distributed quantum networks. Polarization-encoded photons at telecommunication wavelengths provide a compelling plat